Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 10(5) CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462183 | PMC |
http://dx.doi.org/10.1093/femspd/ftv036 | DOI Listing |
Int J Mol Sci
November 2024
College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China.
PLoS Genet
August 2020
Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America.
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1.
View Article and Find Full Text PDFCurr Microbiol
March 2020
School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
A novel polyhydroxyalkanoate (PHA)-producing bacterium, Jeongeupia sp. USM3 (JCM 19920) was isolated from the limestone soil at Gua Tempurung, Perak, Malaysia. This is the first report on the complete genome sequence for the genus Jeongeupia.
View Article and Find Full Text PDFJ Am Chem Soc
November 2016
Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States.
The stabilization of the transition state for hlGPDH-catalyzed reduction of DHAP due to the action of the phosphodianion of DHAP and the cationic side chain of R269 is between 12.4 and 17 kcal/mol. The R269A mutation of glycerol-3-phosphate dehydrogenase (hlGPDH) results in a 9.
View Article and Find Full Text PDFMicrob Cell Fact
February 2016
Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Asturias, Spain.
Background: PM100117 and PM100118 are glycosylated polyketides with remarkable antitumor activity, which derive from the marine symbiotic actinobacteria Streptomyces caniferus GUA-06-05-006A. Structurally, PM100117 and PM100118 are composed of a macrocyclic lactone, three deoxysugar units and a naphthoquinone (NQ) chromophore that shows a clear structural similarity to menaquinone.
Results: Whole-genome sequencing of S.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!