Spatial distribution characteristics of soil C/N ratio and its affecting factors at a county scale in hilly area of Middle Sichuan Basin were analyzed based on field sampling. Result indicated that soil C/N ranged from 4.84 to 21.79, with a mean value of 11.93. The coefficient of variation was 26.3%; which suggested soil C/N had moderate variability in this study area. The ratio of nugget to sill was 73.0%, which suggested the spatial variability of soil C/N was determined by both structural and random factors, and the random factors played a more important role. The soil C/N was higher in northeast and southwest while the central part of the study area was characterized by relatively lower values of soil C/N. The soil C/N ranged from 10.0 to 13.5 in most parts of the study area. Parent material, soil type, topographic factors and land use type had significant impacts on soil C/N (P<0.05). Soil C/N showed a significant positive correlation with elevation and slope (P<0.05). The soil parent materials were able to explain 8.7% of soil C/N spatial variability. The explanatory power of soil group, subgroup and soil genus were 3.8%, 5.0%, 8.7%, respectively. Topographic factors showed the lowest explanatory power of only 0. 8%. However, land use type could explain 23.9% of the spatial variability, which suggested that land use type was the dominant factor in controlling the spatial variability of soil C/N.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil c/n
36
study area
12
soil
10
c/n
9
variability soil
8
c/n ratio
8
factors county
8
county scale
8
scale hilly
8
hilly area
8

Similar Publications

Cereal-legume intercropping stimulates straw decomposition and promotes soil organic carbon stability.

Sci China Life Sci

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.

Increasing carbon (C) sequestration and stability in agricultural soils is a key strategy to mitigate climate change towards C neutrality. Crop diversification is an initiative to increase C sequestration in fields, but it is unclear how legume-based crop diversification impacts the functional components of soil organic carbon (SOC) in dryland, including the formation and transformation of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). We investigated the decomposition of straw residues, the fate of photosynthesized C, as well as the formation of MAOC and POC fractions using an in situC labeling technique in the soybean-wheat intercropping, soybean-maize intercropping and their respective monocropping systems, with and without cover crops.

View Article and Find Full Text PDF

Insect farming is expected to increase in coming years, thus generating high quantities of frass (insect excreta). Frass valorization hinges on basic agronomic research prior to industry upscaling. Here, we investigated soil physiochemical properties, SMAF (Soil Management Assessment Framework) soil health, CO efflux, and bermudagrass [Cynodon dactylon (L.

View Article and Find Full Text PDF

Introduction: Rock weathering is a fundamental process that shapes Earth's topography, soil formation, and other surface processes. However, the mechanisms underlying the influence of fertilizer application on weathering remain poorly understood, especially with respect to bacterial intervention.

Methods: In this study, purple parent rocks from Shaximiao Group (Js) and Penglaizhen Group (Jp) were selected to investigate the effects of fertilizer application on the bacterial community and weathering characteristics of these rock by leaching experiment.

View Article and Find Full Text PDF

Soil microbial communities play a vital role in accelerating nutrient cycling and stabilizing ecosystem functions in forests. However, the diversity of soil microbiome and the mechanisms driving their distribution patterns along elevational gradients in montane areas remain largely unknown. In this study, we investigated the soil microbial diversity along an elevational gradient from 650 m to 3,800 m above sea level in southeast Tibet, China, through DNA metabarcode sequencing of both the bacterial and fungal communities.

View Article and Find Full Text PDF

Household kitchen waste (HKW) is produced in large quantity and its management is difficult due to high moisture content and complex organic matter. Aerobic composting of HKW is an easy, efficient, cost-effective and eco-friendly method. This study is designed to achieve a zero-waste concept and to convert HKW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!