Linear defects in crystalline materials, known as dislocations, are central to the understanding of plastic deformation and mechanical strength, as well as control of performance in a variety of electronic and photonic materials. Despite nearly a century of research on dislocation structure and interactions, measurements of the energetics and kinetics of dislocation nucleation have not been possible, as synthesizing and testing pristine crystals absent of defects has been prohibitively challenging. Here, we report experiments that directly measure the surface dislocation nucleation strengths in high-quality 〈110〉 Pd nanowhiskers subjected to uniaxial tension. We find that, whereas nucleation strengths are weakly size- and strain-rate-dependent, a strong temperature dependence is uncovered, corroborating predictions that nucleation is assisted by thermal fluctuations. We measure atomic-scale activation volumes, which explain both the ultrahigh athermal strength as well as the temperature-dependent scatter, evident in our experiments and well captured by a thermal activation model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat4288 | DOI Listing |
Small
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
Fivefold twins are extensively present in nanoparticles and nanowires, enhancing their performance in physical, chemical, and mechanical properties. However, a deep insight into the correlation between mechanical properties and fivefold twins in bulk nanograined materials is lacking due to synthesis difficulties. Here, a bulk fivefold-twinned nanograined Ni is synthesized via electrodeposition.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).
View Article and Find Full Text PDFNat Commun
January 2025
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
The kinetics of dislocation reactions, such as dislocation multiplication, controls the plastic deformation in crystals beyond their elastic limit, therefore critical mechanisms in a number of applications in materials science. We present a series of large-scale molecular dynamics simulations that shows that one such type of reactions, the nucleation of dislocation at free surfaces, exhibit unconventional kinetics, including unexpectedly large nucleation rates under compression, very strong entropic stabilization under tension, as well as strong non-Arrhenius behavior. These unusual kinetics are quantitatively rationalized using a variational transition state theory approach coupled with an efficient numerical scheme for the estimation of vibrational entropy changes.
View Article and Find Full Text PDFMater Res Lett
October 2024
Mechanics & Materials Lab, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland.
Twinning significantly affects the deformation behavior of hexagonal close-packed Mg, so a thorough understanding of twin nucleation and growth mechanisms is required for enhancing the properties of Mg-based materials. The commonly observed tension twins have been traditionally linked to 〈c + a〉 dislocation dissociation, which results in zonal dislocations with large Burgers vectors several times that of a single twinning dislocation and some residual dislocations. Contrarily, our molecular dynamics simulations reveal twin nucleation from pyramidal II stacking faults through atomic shuffling without shear displacements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of California, Irvine, CA 92697.
Understanding topological defects-controlled structural degradation of layered oxides-a key cathode material for high-performance lithium-ion batteries-plays a critical role in developing next-generation cathode materials. Here, by constructing a nanobattery in an electron microscope enabling atomic-scale monitoring of electrochemcial reactions, we captured the electrochemically driven atomistic dynamics and evolution of dislocations-a most important topological defect in material. We deciphered how dislocations nucleate, move, and annihilate within layered cathodes at the atomic scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!