Although ferric ion (Fe(3+)) performs critical roles in diverse biochemical processes in living systems, its physiological and pathophysiological functions have not been fully explored due to the lack of methods for quantification of Fe(3+) ions in biological system. In this work, a highly sensitive and selective fluorescence chemosensor, L, was developed for the detection of Fe(3+) ions in aqueous solution and in living cells. L was facile synthesized by one step reaction and well characterized by NMR, API-ES, FT-IR, and elementary analysis. The prepared chemosensor displayed excellent selectivity for Fe(3+) ions detection over a wide range of tested metal ions. In the present of Fe(3+) ions, the strong green fluorescence of L was substantially quenched. The 1:1 stoichiometry of the complexation was confirmed by a Job's plot. The association constant (Ka) of L with Fe(3+) was evaluated using the Benesi-Hildebrand method and was found to be 1.36×10(4) M(-1). The MTT assay determined that L exhibits low cytotoxicity toward living cells. Confocal imaging and flow cytometry studies showed that L is readily interiorized by MDA-MB-231 cells through an energy-dependent pathway and could be used to detect of Fe(3+) ions in living cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2015.04.111 | DOI Listing |
Mikrochim Acta
January 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:
The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF was selected for subsequent in vitro and in vivo healing promotion studies.
View Article and Find Full Text PDFMolecules
December 2024
Department of Cosmeceutics, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan.
This research aimed to modify polysaccharides extracted from the edible mushroom with gallic acid (GA) and to complex them with zinc ions. The functionalities of the modified polysaccharides (TFPs) were investigated. Regarding antioxidant activity, TFP-GA demonstrated effective scavenging activity against DPPH radicals, nitric oxide, and hydrogen peroxide.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China. Electronic address:
In this paper, cellulose-lignin films containing Fe were prepared by the codissolution-precipitation method, and the films have high transparency as well as high UV absorption. In this process, kraft lignin chelates with Fe and then bonds with cellulose through hydrogen bonding, evenly distributing within the film. The morphological results showed that the kraft lignin chelated with Fe bound tightly linked to cellulose within the Fe@cellulose-lignin composite films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!