Bacterial lignin degradation could be used to generate aromatic chemicals from the renewable resource lignin, provided that the breakdown pathways can be manipulated. In this study, selective inhibitors of enzymatic steps in bacterial degradation pathways were developed and tested for their effects upon lignin degradation. Screening of a collection of hydroxamic acid metallo-oxygenase inhibitors against two catechol dioxygenase enzymes, protocatechuate 3,4-dioxygenase (3,4-PCD) and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), resulted in the identification of selective inhibitors D13 for 3,4-PCD (IC50 15μM) and D3 for MhpB (IC50 110μM). Application of D13 to Rhodococcus jostii RHA1 in minimal media containing ferulic acid led to the appearance of metabolic precursor protocatechuic acid at low concentration. Application of 1mM disulfiram, an inhibitor of mammalian aldehyde dehydrogenase, to R. jostii RHA1, gave rise to 4-carboxymuconolactone on the β-ketoadipate pathway, whereas in Pseudomonas fluorescens Pf-5 disulfiram treatment gave rise to a metabolite found to be glycine betaine aldehyde.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2015.05.002DOI Listing

Publication Analysis

Top Keywords

lignin degradation
12
selective inhibitors
12
bacterial lignin
8
degradation pathways
8
jostii rha1
8
chemical intervention
4
intervention bacterial
4
lignin
4
degradation
4
pathways development
4

Similar Publications

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Analyze the impact of lignin depolymerization process and its products on humic substance formation.

Int J Biol Macromol

January 2025

College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China. Electronic address:

This study aimed to identify types of lignin depolymerization products (LDP) and their role in humic substances (HS) formation, and little research has revealed which LDP could participate into HS formation during composting. Therefore, rice straw (RS), peanut straw (PS) and pine needles (PN) were selected for their different lignin structures to qualitatively and quantitative analyze LDP firstly. Qualitative results indicated that RS, PS and PN mainly produced LDP with G-type, common group and dimer structure.

View Article and Find Full Text PDF

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with OH/O via Molecular Signatures.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.

View Article and Find Full Text PDF

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

Redox enzymes, mostly equipped with metal or organic cofactors, can vary their reactivity with oxygen by orders of magnitudes. Understanding how oxygen reactivity is controlled by the protein milieu remains an open issue with broad implications for mechanistic enzymology and enzyme design. Here, we address this problem by focusing on a widespread group of flavoenzymes that oxidize phenolic compounds derived from microbial lignin degradation, using either oxygen or a cytochrome c as electron acceptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!