Structural Investigation of (U0.7Pu0.3)O2-x Mixed Oxides.

Inorg Chem

†European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe, Germany.

Published: June 2015

Uranium-plutonium mixed oxide containing 30% of plutonium is a candidate fuel for several fast neutron and accelerator driven reactor systems. In this work, a detailed structural investigation on sol-gel synthesized stoichiometric U0.7Pu0.3O2.00 and substoichiometric U0.7Pu0.3O2-x, using X-ray diffraction (XRD), oxygen 17 magic angle spinning nuclear magnetic resonance ((17)O MAS NMR) and X-ray absorption spectroscopy is described. As observed by XRD, the stoichiometric U0.7Pu0.3O2.00 is monophasic with a lattice parameter in good agreement with Vegard's law, while the substoichiometric U0.7Pu0.3O2-x material is biphasic. Solid solution ideality in terms of a random distribution of metal atoms is proven for U0.7Pu0.3O2.00 with (17)O MAS NMR. X-ray absorption near-edge structure (XANES) spectroscopy shows the presence of plutonium(III) in U0.7Pu0.3O2-x. Extended X-ray absorption fine-structure (EXAFS) spectroscopy indicates a similar local structure around both cations, and comparison with XRD indicates a close similarity between uranium and plutonium local structures and the long-range ordering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b00392DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
12
structural investigation
8
stoichiometric u07pu03o200
8
substoichiometric u07pu03o2-x
8
17o mas
8
mas nmr
8
nmr x-ray
8
u07pu03o2-x
4
investigation u07pu03o2-x
4
u07pu03o2-x mixed
4

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Introduction: Load carriage is an inherent part of tactical operations. Critical speed (CS) has been associated with technical and combat-specific performance measures (e.g.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water-Starch Polymer Interactions.

Foods

December 2024

Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.

The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).

View Article and Find Full Text PDF

Study on the Aging Effects of Relative Humidity on the Primary Chemical Components of Palm Leaf Manuscripts.

Polymers (Basel)

December 2024

Key Laboratory of Archaeomaterials and Conservation, Ministry of Education, Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China.

Palm Leaf Manuscripts represent a significant component of the world's cultural heritage. Investigating their primary chemical components and understanding the transformations these materials undergo under environmental influences are crucial for elucidating their material characteristics and aging mechanisms and developing effective strategies for preventive conservation. This study utilized infrared absorption spectroscopy and X-ray diffraction analysis to examine changes in the primary chemical components of Palm Leaf Manuscripts under varying relative humidity conditions over extended periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!