Chromosomal localization of microsatellite loci in Drosophila mediopunctata.

Genet Mol Biol

Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil .

Published: March 2015

Drosophila mediopunctata has been used as a model organism for genetics and evolutionary studies in the last three decades. A linkage map with 48 microsatellite loci recently published for this species showed five syntenic groups, which had their homology determined to Drosophila melanogaster chromosomes. Then, by inference, each of the groups was associated with one of the five major chromosomes of D. mediopunctata. Our objective was to carry out a genetic (chromosomal) analysis to increase the number of available loci with known chromosomal location. We made a simultaneous analysis of visible mutant phenotypes and microsatellite genotypes in a backcross of a standard strain and a mutant strain, which had each major autosome marked. Hence, we could establish the chromosomal location of seventeen loci; including one from each of the five major linkage groups previously published, and twelve new loci. Our results were congruent with the previous location and they open new possibilities to future work integrating microsatellites, chromosomal inversions, and genetic determinants of physiological and morphological variation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415555PMC
http://dx.doi.org/10.1590/S1415-475738138120140275DOI Listing

Publication Analysis

Top Keywords

microsatellite loci
8
drosophila mediopunctata
8
chromosomal location
8
chromosomal
5
loci
5
chromosomal localization
4
localization microsatellite
4
loci drosophila
4
mediopunctata drosophila
4
mediopunctata model
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.

Background: Classical genome-wide association studies (GWAS) of Alzheimer's disease (AD), which successfully identified over 75 risk loci to date, are limited to the content of the imputation panels that typically do not cover all types of genetic variation, e.g., tandem repeats encompassing >55% of human genome.

View Article and Find Full Text PDF

Genomic microsatellite characterization and development of polymorphic microsatellites in Eospalax baileyi.

Sci Rep

January 2025

Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China.

Microsatellite markers are cost-effective, rapid, efficient, and show great advantages in in large-sample kinship analysis and population structure studies. However, microsatellite loci are seriously underdeveloped in non-model organisms. The plateau zokor (Eospalax baileyi) is a key species living underground in the Tibetan Plateau, the effective management of which has long been challenging.

View Article and Find Full Text PDF

Background: Native to the Amazon region, Copaifera multijuga Hayne is a large tree (≈ 36 m in height) that is heavily exploited for extraction of its oleoresin. Many studies have addressed the phytochemical properties and applications of this raw material; however, there are few initiatives that have focused on the genetic characterization of native populations of this species. To this end, our objective was to develop microsatellite markers for C.

View Article and Find Full Text PDF

Background: In the context of global change, coral reefs and their associated biodiversity are under threat. Several conservation strategies using population genetics have been explored to protect them. However, some components of this ecosystem are understudied, such as hydrozoans, an important class of benthic organisms worldwide.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!