Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wave propagation was investigated in the Bouligand-like structure from within the dactyl club of the stomatopod, a crustacean that is known to smash their heavily shelled preys with high accelerations. We incorporate the layered nature in a unitary material cell through the propagator matrix formalism while the periodic nature of the material is considered via Bloch boundary conditions as applied in the theory of solid state physics. Our results show that these materials exhibit bandgaps at frequencies related to the stress pulse generated by the impact of the dactyl club to its prey, and therefore exhibiting wave filtering in addition to the already known mechanisms of macroscopic isotropic behavior and toughness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2015.04.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!