A sequential extraction approach was used to evaluate the effects of various combinations of passivators (sepiolite, phosphate rock, and coal fly ash) on the concentration and speciation of Cu in swine manure aerobic compost along with soil to which the compost had been applied. The results indicate that the various passivators altered the bound forms of Cu in pig manure and soil; the concentrations of exchangeable and Fe-Mn-bound Cu decreased, whereas the residual Cu concentration increased, indicating that Cu transformed to low-availability forms after the passivator treatments. The concentrations of the carbonate-bound and organic-bound Cu varied widely. Among all treatments, the treatment of the control + straw + sepiolite + coal fly ash (2.5 %) + phosphate rock (5.0 %) resulted in the most efficient passivation of Cu; the percentage of residual Cu reached 3.91-21.14 %, obviously surpassing the percentage for the control without passivation. The treatment of the control + straw + sepiolite + phosphate rock (2.5 %) resulted in the lowest residual Cu fraction (0.85 %) among passivator treatments. These results show that the addition of suitable combinations of passivators to the composting process reduced the availability of Cu and the risk of Cu pollution during the application of composted pig manure to soil. Passivation also decreased the Cu content of Apium graveolens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-4680-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!