Musculoskeletal injuries greatly affect the U.S. population and current clinical approaches fail to restore long-term native tissue structure and function. Tissue engineering is a strategy advocated to improve tendon healing; however, the field still needs to establish biological benchmarks for assessing the effectiveness of tissue-engineered structures. Investigating superior healing models, such as the MRL/MpJ, offers the opportunity to first characterize successful healing and then apply experimental findings to tissue-engineered therapies. This study seeks to evaluate the MRL/MpJ's healing response following a central patellar tendon injury compared to wildtype. Gene expression and histology were assessed at 3, 7, and 14 days following injury and mechanical properties were measured at 2, 5, and 8 weeks. Native patellar tendon biological and mechanical properties were not different between strains. Following injury, the MRL/MpJ displayed increased mechanical properties between 5 and 8 weeks; however, early tenogenic expression patterns were not different between the strains. Furthermore, expression of the cyclin-dependent kinase inhibitor, p21, was not different between strains, suggesting an alternative mechanism may be driving the healing response. Future studies will investigate collagen structure and alignment of the repair tissue and characterize the complete healing transcriptome to identify mechanisms driving the MRL/MpJ response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007538PMC
http://dx.doi.org/10.1002/jor.22928DOI Listing

Publication Analysis

Top Keywords

patellar tendon
12
mechanical properties
12
tendon injury
8
healing response
8
healing
6
improved biomechanical
4
biomechanical biological
4
biological outcomes
4
mrl/mpj
4
outcomes mrl/mpj
4

Similar Publications

Background: Patellar instability is frequently encountered by orthopaedic surgeons. One of the major risk factors of this condition is underlying trochlear dysplasia (TD). Recent trends have indicated the use of multiple procedures to correct patellar instability under these conditions.

View Article and Find Full Text PDF

Background: While allografts are commonly used for anterior cruciate ligament reconstruction (ACLR), evidence to guide specific allograft selection is lacking.

Purpose: To compare clinical and graft failure rates after ACLR using soft tissue-only allografts and bone-soft tissue allografts in adults.

Study Design: Systematic review and meta-analysis; Level of evidence, 4.

View Article and Find Full Text PDF

Background: There is a lack of evidence and continuous debate on whether femoral tunnel displacement substantially influences the clinical efficacy of medial patellofemoral ligament reconstruction (MPFL-R) in addressing recurrent patellar dislocation.

Purpose: To investigate possible associations between inaccurate femoral tunnel placement during MPFL-R and clinical outcomes, with a specific focus on proximal tunnel malpositioning.

Study Design: Cohort study; Level of evidence, 3.

View Article and Find Full Text PDF

Background: Despite advancements in prosthetic designs and surgical techniques, patellar dislocation remains a rare but significant complication following total knee arthroplasty, with an incidence ranging between 0.15% and 0.5%.

View Article and Find Full Text PDF

Patellar instability following total knee arthroplasty (TKA) is a rare, yet serious complication, potentially requiring revision surgery or resulting in chronic dysfunction. When encountered, it is paramount to understand the etiologies, diagnostic approaches, treatment options, and outcomes of the selected treatment. The most common cause of patella instability is improper positioning of components, leading to lateral maltracking of the patella.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!