The structures and environments of the protein-bound peridinins (Pers) and chlorophylls (Chls) a/c2 in the membrane-intrinsic major light-harvesting complex of the dinoflagellate Amphidinium carterae (LHCAmph) are characterised using resonance Raman (RR) spectroscopy with 11 excitation wavelengths, at 77K. The excitation-dependent variation in the CC stretching mode (ν1) suggests the presence of three Pers with conjugation lengths over 8 double bonds (dBs), and one diadinoxanthin, between 413.7 and 528.7nm. Two Perred species are revealed on excitation at 550 and 560nm. These Perred species exhibit anomalously low ν1 values, together with notable resonant enhancement of lactone ring-breathing and -deformation modes. To discern protein-specific effects, the RR spectra are compared to that of Per in polar (acetonitrile), polarisable (toluene) and polar-protic (ethanol) solvents. Resonantly enhanced lactone, ring-breathing (942cm(-1)) and ring-deformation (~650cm(-1)), modes are identified both in solution, and in the protein, and discussed in the context of the mixing of the S1 and S2 states, and formation of the intramolecular charge-transfer (ICT) state. In the Chl-absorbing region, two sets of Chl c2's, and (at least) six Chl a's can be differentiated. With a pigment ratio of 5-6 (Chl a):2 (Chl c2):5-6 (Per):1 Ddx determined from the fit to the RT absorption and 77K RR spectra, sequence comparison of LHCAmp to LHCII, and the diatom LHC, fucoxanthin-chlorophyll-a/c-protein (FCP), a template for the conserved pigment binding sites is proposed, to fill the paucity of structural information in the absence of a crystal structure for LHCAmph.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2015.05.006DOI Listing

Publication Analysis

Top Keywords

membrane-intrinsic major
8
major light-harvesting
8
light-harvesting complex
8
amphidinium carterae
8
resonance raman
8
raman spectroscopy
8
perred species
8
lactone ring-breathing
8
pigment organisation
4
organisation membrane-intrinsic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!