Irradiation, delivered by a synchrotron facility, using a set of highly collimated, narrow and parallel photon beams spaced by 1 mm or less, has been termed Microbeam Radiation Therapy (MRT). The tolerance of healthy tissue after MRT was found to be better than after standard broad X-ray beams, together with a more pronounced response of malignant tissue. The microbeam spacing and transverse peak-to-valley dose ratio (PVDR) are considered to be relevant biological MRT parameters. We investigated the MRT concept for proton microbeams, where we expected different depth-dose profiles and PVDR dependences, resulting in skin sparing and homogeneous dose distributions at larger beam depths, due to differences between interactions of proton and photon beams in tissue. Using the FLUKA Monte Carlo code we simulated PVDR distributions for differently spaced 0.1 mm (sigma) pencil-beams of entrance energies 60, 80, 100 and 120 MeV irradiating a cylindrical water phantom with and without a bone layer, representing human head. We calculated PVDR distributions and evaluated uniformity of target irradiation at distal beam ranges of 60-120 MeV microbeams. We also calculated PVDR distributions for a 60 MeV spread-out Bragg peak microbeam configuration. Application of optimised proton MRT in terms of spot size, pencil-beam distribution, entrance beam energy, multiport irradiation, combined with relevant radiobiological investigations, could pave the way for hypofractionation scenarios where tissue sparing at the entrance, better malignant tissue response and better dose conformity of target volume irradiation could be achieved, compared with present proton beam radiotherapy configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2015.04.006 | DOI Listing |
Biomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFPhys Med Biol
December 2024
Department of Physics and Astronomy, University of Victoria, Victoria, Canada.
To evaluate spatially fractionated radiation therapy (SFRT) for very-high-energy electrons (VHEEs) delivered with pencil beam scanning.. Radiochromic film was irradiated at the CERN linear electron accelerator for research using 194 MeV electrons with a step-and-shoot technique, moving films within a water tank.
View Article and Find Full Text PDFMed Phys
November 2024
Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France.
Background: Ultra-high dose rate (UHDR/FLASH) irradiations, along with particle minibeam therapy (PMBT) are both emerging as promising alternatives to current radiotherapy techniques thanks to their improved healthy tissue sparing and similar tumor control.
Purpose: Monte Carlo (MC) modeling of a commercial machine delivering 5-7 MeV electrons at UHDR. This model was used afterward to compare measurements against simulations for an experimental setup combining both FLASH and PMBT modalities.
Phys Med Biol
October 2024
Department of Radiation Oncology, University of Kansas Medical Center, Kansas, United States of America.
LATTICE, a spatially fractionated radiation therapy (SFRT) modality, is a 3D generalization of GRID and delivers highly modulated peak-valley spatial dose distribution to tumor targets, characterized by peak-to-valley dose ratio (PVDR). Proton LATTICE is highly desirable, because of the potential synergy of the benefit from protons compared to photons, and the benefit from LATTICE compared to GRID. Proton LATTICE using standard proton RT via intensity modulated proton therapy (IMPT) (with a few beam angles) can be problematic with poor target dose coverage and high dose spill to organs-at-risk (OAR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!