Cost saving potential in cardiovascular hospital costs due to reduction in air pollution.

Sci Total Environ

Interuniversity Centre for Health Economics Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.

Published: September 2015

Objective: We describe a methodological framework to estimate potential cost savings in Belgium for a decrease in cardiovascular emergency admissions (ischemic heart disease (IHD), heart rhythm disturbances (HRD), and heart failure) due to a reduction in air pollution.

Methods: Hospital discharge data on emergency admissions from an academic hospital were used to identify cases, derive risk functions, and estimate hospital costs. Risk functions were derived with case-crossover analyses with weekly average PM10, PM2.5, and NO2 exposures. The risk functions were subsequently used in a micro-costing analysis approach. Annual hospital cost savings for Belgium were estimated for two scenarios on the decrease of air pollution: 1) 10% reduction in each of the pollutants and 2) reduction towards annual WHO guidelines.

Results: Emergency admissions for IHD and HRD were significantly associated with PM10, PM2.5, and NO2 exposures the week before admission. The estimated risk reduction for IHD admissions was 2.44% [95% confidence interval (CI): 0.33%-4.50%], 2.34% [95% CI: 0.62%-4.03%], and 3.93% [95% CI: 1.14%-6.65%] for a 10% reduction in PM10, PM2.5, and NO2 respectively. For Belgium, the associated annual cost savings were estimated at € 5.2 million, € 5.0 million, and € 8.4 million respectively. For HRD, admission risk could be reduced by 2.16% [95% CI: 0.14%-4.15%], 2.08% [95% CI: 0.42%-3.70%], and 3.46% [95% CI: 0.84%-6.01%] for a 10% reduction in PM10, PM2.5, and NO2 respectively. This corresponds with a potential annual hospital cost saving in Belgium of € 3.7 million, € 3.6 million, and € 5.9 million respectively. If WHO annual guidelines for PM10 and PM2.5 are met, more than triple these amounts would be saved.

Discussion: This study demonstrates that a model chain of case-crossover and micro-costing analyses can be applied in order to obtain estimates on the impact of air pollution on hospital costs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.04.104DOI Listing

Publication Analysis

Top Keywords

pm10 pm25
20
pm25 no2
16
€ €
16
hospital costs
12
air pollution
12
cost savings
12
emergency admissions
12
risk functions
12
10% reduction
12
cost saving
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!