A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Auxin carrier and signaling dynamics during gravitropic root growth. | LitMetric

Auxin carrier and signaling dynamics during gravitropic root growth.

Methods Mol Biol

Department of Applied Genetics and Cell Biology (DAGZ), BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.

Published: February 2016

Plant growth relates to gravity, ensuring that roots grow downwards into the soil and shoots expand aerially. The phytohormone auxin mediates tropistic growth responses, such as root gravitropism. Gravity perception in the very tip of the roots triggers carrier-dependent, asymmetric redistribution of auxin, leading to differential auxin responses and growth regulation at the upper and lower root flanks. This cellular, asymmetry-breaking event will eventually lead to root bending towards the gravity vector. Here, we show how to investigate auxin signaling and auxin carrier dynamics during root gravitropic response, using a chambered cover glass in combination with a confocal live cell imaging approach. To exemplify this method, we used established lines expressing transcriptional and translational green fluorescent protein (GFP) fusions to the auxin responsive promoter element DR5rev and the prominent auxin carrier PIN-FORMED2 (PIN2), respectively. Transgenic seedlings were placed and grown in the chambered cover glasses, enabling defined gravitropic stimulations prior to imaging. This method is optimal for inverted microscopes and significantly reduces stressful manipulations during specimen preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-2697-8_7DOI Listing

Publication Analysis

Top Keywords

auxin carrier
12
auxin
8
chambered cover
8
root
5
carrier signaling
4
signaling dynamics
4
dynamics gravitropic
4
gravitropic root
4
growth
4
root growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!