CGGBP1 mitigates cytosine methylation at repetitive DNA sequences.

BMC Genomics

Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Rudbeck Laboratory, Dag Hammarskjölds Väg 20, Uppsala, 75185, Sweden.

Published: May 2015

Background: CGGBP1 is a repetitive DNA-binding transcription regulator with target sites at CpG-rich sequences such as CGG repeats and Alu-SINEs and L1-LINEs. The role of CGGBP1 as a possible mediator of CpG methylation however remains unknown. At CpG-rich sequences cytosine methylation is a major mechanism of transcriptional repression. Concordantly, gene-rich regions typically carry lower levels of CpG methylation than the repetitive elements. It is well known that at interspersed repeats Alu-SINEs and L1-LINEs high levels of CpG methylation constitute a transcriptional silencing and retrotransposon inactivating mechanism.

Results: Here, we have studied genome-wide CpG methylation with or without CGGBP1-depletion. By high throughput sequencing of bisulfite-treated genomic DNA we have identified CGGBP1 to be a negative regulator of CpG methylation at repetitive DNA sequences. In addition, we have studied CpG methylation alterations on Alu and L1 retrotransposons in CGGBP1-depleted cells using a novel bisulfite-treatment and high throughput sequencing approach.

Conclusions: The results clearly show that CGGBP1 is a possible bidirectional regulator of CpG methylation at Alus, and acts as a repressor of methylation at L1 retrotransposons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432828PMC
http://dx.doi.org/10.1186/s12864-015-1593-2DOI Listing

Publication Analysis

Top Keywords

cpg methylation
28
methylation repetitive
12
methylation
10
cytosine methylation
8
repetitive dna
8
dna sequences
8
cpg-rich sequences
8
repeats alu-sines
8
alu-sines l1-lines
8
levels cpg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!