DNA Methylation and MicroRNA-Based Biomarkers for Risk of Type 2 Diabetes.

Curr Diabetes Rev

Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.

Published: June 2016

The rapidly increasing prevalence of type 2 diabetes (T2D) is motivating an intensive search for biomarkers to identify individuals at risk for developing the disease. It has been established that both genetic and environmental factors are influential in the progression to T2D. Currently, the number of genetic loci implicated in T2D susceptibility is more than 65 and together, these factors explain only about 10% of the risk. At this time, prediction models using genetic information do not perform substantially better than models based on routine clinical measures. The search for new biomarkers must integrate new, independent factors beyond the static genome that are influenced by environmental conditions. This search must also recognize the heterogeneity of T2D and seek new biomarkers of potential subtypes and confounding conditions such as obesity. Modulation of gene expression by epigenetic modifications and the action of microRNAs are being recognized as critical processes affecting T2D risk. This review provides an update on the current state of genetic biomarkers of T2D susceptibility and examines how epigenetic modulation of some new and established diabetes susceptibility genes can identify increased risk and provide biomarkers for early detection and therapeutic monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573399811666150515125557DOI Listing

Publication Analysis

Top Keywords

type diabetes
8
search biomarkers
8
t2d susceptibility
8
biomarkers
6
t2d
6
risk
5
dna methylation
4
methylation microrna-based
4
microrna-based biomarkers
4
biomarkers risk
4

Similar Publications

Comprehensive review of animal models in diabetes research using chemical agents.

Lab Anim

January 2025

Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.

Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.

View Article and Find Full Text PDF

Sedentary lifestyles and prolonged physical inactivity are often linked to poor mental and physical health as well as an increased risk of a number of chronic illnesses, including cancer, obesity, type 2 diabetes, and cardiovascular problems. Metabolic Syndrome (MetS), as the new disease, has emerged as the world's leading cause of illness. Despite having its roots in the West, this issue has now completely globalized due to the development of the Western way of life throughout the world.

View Article and Find Full Text PDF

Enhancing metformin efficacy with cholecalciferol and taurine in diabetes therapy: Potential and limitations.

World J Diabetes

January 2025

Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), poses a significant global health challenge. Traditional management strategies primarily focus on glycemic control; however, there is a growing need for comprehensive approaches addressing the complex pathophysiology of diabetes complications. The recent study by Attia explores the potential of a novel therapy combining metformin with cholecalciferol (vitamin D3) and taurine to mitigate T2DM-related complications in a rat model.

View Article and Find Full Text PDF

Background: At present, the existing internal medicine drug treatment can alleviate the high glucose toxicity of patients to a certain extent, to explore the efficacy of laparoscopic jejunoileal side to side anastomosis in the treatment of type 2 diabetes, the report is as follows.

Aim: To investigate the effect of jejunoileal side-to-side anastomosis on metabolic parameters in patients with type 2 diabetes mellitus (T2DM).

Methods: We retrospectively analyzed the clinical data of 78 patients with T2DM who were treated jejunoileal lateral anastomosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!