Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584185 | PMC |
http://dx.doi.org/10.1016/j.ejphar.2015.05.014 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
November 2024
Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research(ACECR), Tehran, Iran.
Breast cancer (BC) is a global health concern with a growing prevalence. Since BC is a heterogeneous cancer, transcriptome analyzes were carried out on breast tumor tissues relative to their corresponding normal tissues in order to identify gene expression signatures and perform meta-analysis. Five expression profiling by array data sets from breast tumor tissues and non-tumor neighboring tissues were retrieved following a search in the GEO database (GSE70947, GSE70905, GSE10780, GSE29044, and GSE42568).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
Clinical and experimental evidence indicates that alcohol use causes various abnormalities in the immune system and compromises immune functions. However, the mechanistic understanding of ethanol's effects on the immune system remains limited. Cyclic AMP (cAMP) regulates multiple processes, including immune responses.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.
The gamma-ray-induced random mutagenesis of an engineered β-carotene-producing XL1-Blue resulted in the variant Ajou 45, which exhibits significantly enhanced β-carotene production. The whole-genome sequencing of Ajou 45 identified 55 mutations, notably including a reduction in the copy number of , encoding adenylate cyclase, a key enzyme regulating intracellular cyclic AMP (cAMP) levels. While the parental XL1-Blue strain harbors two copies of , Ajou 45 retains only one, potentially leading to reduced intracellular cAMP concentrations.
View Article and Find Full Text PDFFront Physiol
November 2024
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland.
Red blood cells (RBCs) play a role in the regulation of vascular tone via release of adenosine triphosphate (ATP) into the vasculature in response to various stimuli. Interestingly, ApoE/LDLR double-deficient (ApoE/LDLR) mice, a murine model of atherosclerosis, display a higher exercise capacity compared to the age-matched controls. However, it is not known whether increased exercise capacity in ApoE/LDLR mice is linked to the altered ATP release from RBCs.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA. Electronic address:
SPTLC3, an inducible subunit of the serine palmitoyltransferase (SPT) complex, causes production of alternative sphingoid bases, including a 16-carbon dihydrosphingosine, whose biological function is only beginning to emerge. High-fat feeding induced SPTLC3 in the liver, prompting us to produce a liver-specific knockout mouse line. Following high-fat feeding, knockout mice showed decreased fasting blood glucose, and knockout primary hepatocytes showed suppressed glucose production, a core function of hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!