The membrane-spanning α helices of single-pass receptors play crucial roles in stabilizing oligomeric structures and transducing biochemical signals across the membrane. Probing intermolecular transmembrane interactions in single-pass receptors presents unique challenges, reflected in a gross underrepresentation of their membrane-embedded domains in structural databases. Here, we present two high-resolution structures of transmembrane assemblies from a eukaryotic single-pass protein crystallized in a lipidic membrane environment. Trimeric and tetrameric structures of the immunoreceptor signaling module DAP12, determined to 1.77-Å and 2.14-Å resolution, respectively, are organized by the same polar surfaces that govern intramembrane assembly with client receptors. We demonstrate that, in addition to the well-studied dimeric form, these trimeric and tetrameric structures are made in cells, and their formation is competitive with receptor association in the ER. The polar transmembrane sequences therefore act as primary determinants of oligomerization specificity through interplay between charge shielding and sequestration of polar surfaces within helix interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449314 | PMC |
http://dx.doi.org/10.1016/j.celrep.2015.04.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!