Mycobacterium bovis is the causative agent of tuberculosis in cattle. Infection of macrophages with M. bovis leads to the activation of the "nucleotide binding and oligomerization, leucine-rich repeat and pyrin domains-containing protein 3" (NLRP3) and "absent in melanoma 2" (AIM2) inflammasomes, which in turn triggers release of the proinflammatory cytokine interleukin-1β (IL-1β) that contributes to bacterial clearance and plays a crucial role in the host defense. However, NLRP3 and AIM2 inflammasome activation is influenced by several factors and how IL-1β secretion by M. bovis-infected macrophages is regulated via the inflammasome pathway remains unclear. Here we found that IL-1β secretion and pro-IL-1β protein accumulation were inhibited in THP-1 macrophages upon exposure to the virulent M. bovis Beijing strain in the presence of high K(+) concentrations, cycloheximide (a protein synthesis inhibitor) and PR-619 (a deubiquitinating enzyme inhibitor). Scavenging reactive oxygen species (ROS) induced by N-acetylcysteine reduced IL-1β release independent of the mitochondrial permeability transition. Collectively, our results suggest that IL-1β secretion by M. bovis-infected THP-1 macrophages is reduced by high extracellular K(+) concentration, inhibition of new protein synthesis, deubiquitination, and ROS generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10482-015-0475-6 | DOI Listing |
Breast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFChin Med
December 2024
School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
Background: Liver fibrosis is a complex reparative process in response to chronic liver injuries, with limited effective therapeutic options available in clinical practice. During liver fibrosis, liver sinusoidal endothelial cells (LSECs) undergo phenotypic changes and also play a role in modulating cellular communications. Si-Wu-Tang (SWT), a traditional Chinese herbal remedy, has been extensively studied for its effectiveness in treating hematological, gynecological and hepatic diseases.
View Article and Find Full Text PDFJ Transl Med
December 2024
Lishui Key Laboratory of mental Health and brain Disorders, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China.
Background: Autism spectrum disorder (ASD) is a persistent neurodevelopmental disorder affecting brains of children. Mounting evidences support the associations between gut microbial dysbiosis and ASD, whereas detailed mechanisms are still obscure.
Methods: Here we probed the potential roles of gut microbiome in ASD using fecal metagenomics and metabolomics.
Eur J Med Res
December 2024
Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
Background: Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
Cardiovascular diseases (CVDs) are the leading cause of mortality among individuals with noncommunicable diseases worldwide. Obesity is associated with an increased risk of developing cardiovascular disease (CVD). Mitochondria are integral to the cardiovascular system, and it has been reported that mitochondrial transfer is associated with the pathogenesis of multiple CVDs and obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!