Hyperbranched polymers are obtained through one-step polymerization reactions and exhibit properties that are very similar to those of perfect dendrimer analogues. Therefore, hyperbranched polymers are a suitable alternative for perfect dendrimers as building blocks for dendritic nanocarrier systems. With regard to using soluble hyperbranched polymers as carrier systems, their flexible chains are a major benefit as they can adopt and compartment guest molecules. Upon encapsulation, the properties of the host decides the fate of the guest, e.g., solubility, but the host can also shield a guest from the environment and protect it, e.g., from degradation and deactivation. With regard to the advantages of using hyperbranched polymers as nanocarrier systems and their scalable synthesis, we will discuss different types of hyperbranched polymers and their application as nanocarrier systems for drugs, dyes, and other guest molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cs00333k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!