Predicting an individual's risk of experiencing a future clinical outcome is a statistical task with important consequences for both practicing clinicians and public health experts. Modern observational databases such as electronic health records provide an alternative to the longitudinal cohort studies traditionally used to construct risk models, bringing with them both opportunities and challenges. Large sample sizes and detailed covariate histories enable the use of sophisticated machine learning techniques to uncover complex associations and interactions, but observational databases are often 'messy', with high levels of missing data and incomplete patient follow-up. In this paper, we propose an adaptation of the well-known Naive Bayes machine learning approach to time-to-event outcomes subject to censoring. We compare the predictive performance of our method with the Cox proportional hazards model which is commonly used for risk prediction in healthcare populations, and illustrate its application to prediction of cardiovascular risk using an electronic health record dataset from a large Midwest integrated healthcare system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523419 | PMC |
http://dx.doi.org/10.1002/sim.6526 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States.
Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFJ Cheminform
January 2025
Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.
View Article and Find Full Text PDFReprod Health
January 2025
Department of Global Health, University of Warwick, Coventry, UK.
Objectives: The research objectives were to identify and synthesise prevailing definitions and indices of resilience in maternal, newborn, and child health (MNCH) and propose a harmonised definition of resilience in MNCH research and health programmes in low- and middle-income countries (LMICs).
Design: Scoping review using Arksey and O'Malley's framework and a Delphi survey for consensus building.
Participants: Mothers, new-borns, and children living in low- and middle-income countries were selected as participants.
BMC Med Inform Decis Mak
January 2025
Kenya Medical Research Institute- Center for Global Health Research (KEMRI-CGHR), P.O Box 1578-40100, Kisumu, Kenya.
Background: Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are currently no clinical decision tools for timely identification and better management of children with increased risk. This study utilizes machine learning (ML) to derive and validate a predictive model for LDD among children presenting with diarrhea to health facilities.
Methods: LDD was defined as a diarrhea episode lasting ≥ 7 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!