Sphingolipid- and cholesterol-rich lipid raft microdomains are important in the initiation of BCR signaling. Although it is known that lipid rafts promote the coclustering of BCR and Lyn kinase microclusters within the B cell IS, the molecular mechanism of the recruitment of lipid rafts into the B cell IS is not understood completely. Here, we report that the synaptic recruitment of lipid rafts is dependent on the cytoskeleton-remodeling proteins, RhoA and Vav. Such an event is also efficiently regulated by motor proteins, myosin IIA and dynein. Further evidence suggests the synaptic recruitment of lipid rafts is, by principle, an event triggered by BCR signaling molecules and second messenger molecules. BCR-activating coreceptor CD19 potently enhances such an event depending on its cytoplasmic Tyr421 and Tyr482 residues. The enhancing function of the CD19-PI3K module in synaptic recruitment of lipid rafts is also confirmed in human peripheral blood B cells. Thus, these results improve our understanding of the molecular mechanism of the recruitment of lipid raft microdomains in B cell IS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.2A0614-287RR | DOI Listing |
Mater Today Bio
February 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA.
Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.
View Article and Find Full Text PDFNeuron
January 2025
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:
Neurexin cell-adhesion molecules regulate synapse development and function by recruiting synaptic components. Here, we uncover a mechanism for presynaptic assembly that precedes neurexin recruitment, mediated by interactions between cytosolic proteins and membrane phospholipids. Developmental imaging in C.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!