MeCP2 is associated with several neurological disorders; of which, Rett syndrome undoubtedly represents the most frequent. Its molecular roles, however, are still unclear, and data from animal models often describe adult, symptomatic stages, while MeCP2 functions during embryonic development remain elusive. We describe the pattern and timing of Mecp2 expression in the embryonic neocortex highlighting its low but consistent expression in virtually all cells and show the unexpected occurrence of transcriptional defects in the Mecp2 null samples at a stage largely preceding the onset of overt symptoms. Through the deregulated expression of ionic channels and glutamatergic receptors, the lack of Mecp2 during early neuronal maturation leads to the reduction in the neuronal responsiveness to stimuli. We suggest that such features concur to morphological alterations that begin affecting Mecp2 null neurons around the perinatal age and become evident later in adulthood. We indicate MeCP2 as a key modulator of the transcriptional mechanisms regulating cerebral cortex development. Neurological phenotypes of MECP2 patients could thus be the cumulative result of different adverse events that are already present at stages when no obvious signs of the pathology are evident and are worsened by later impairments affecting the central nervous system during maturation and maintenance of its functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhv078 | DOI Listing |
Int J Mol Sci
October 2024
Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy.
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 () gene. Despite advancements in research, no cure exists due to an incomplete understanding of the molecular effects of MeCP2 deficiency. Previous studies have identified impaired tropomyosin receptor kinase (Trk) neurotrophin (NTP) signaling and mitochondrial redox imbalances as key drivers of the pathology.
View Article and Find Full Text PDFBrain
September 2024
Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy.
CNS Drugs
November 2024
Vanderbilt University Medical Center, Nashville, TN, USA.
Stem Cell Reports
August 2024
University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA; University of California, San Diego, Kavli Institute for Brain and Mind, Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA. Electronic address:
Cell Mol Life Sci
April 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!