Hepatocyte nuclear factor-1α (HNF1α) is a transcription factor expressed in tissues of endoderm origin. Mutations in HNF1A are associated with maturity-onset diabetes of the young 3 (MODY3). Mice deficient for Hnf1α are hyperglycemic, with their pancreatic β-cells being defective in glucose-sensing insulin secretion. The specific mechanisms involved in this defect are unclear. Gut hormones control glucose homeostasis. Our objective was to explore whether changes in these hormones play a role in glucose homeostasis in the absence of Hnf1α. An increase in ghrelin gene transcript and a decrease in glucose-dependent insulinotropic polypeptide (GIP) gene transcripts were observed in the gut of Hnf1α-null mice. These changes correlated with an increase of ghrelin and a decrease of GIP-labeled cells. Ghrelin serological levels were significantly induced in Hnf1α-null mice. Paradoxically, GIP levels were also induced in these mice. Treatment of Hnf1α-null mice with a ghrelin antagonist led to a recovery of the diabetic symptoms. We conclude that upregulation of ghrelin in the absence of Hnf1α impairs insulin secretion and can be reversed by pharmacological inhibition of ghrelin/GHS-R interaction. These observations open up on future strategies to counteract ghrelin action in a program that could become beneficial in controlling non-insulin-dependent diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db15-0124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!