Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

Med Phys

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy and CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy.

Published: May 2015

Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging.

Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy.

Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz.

Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4915921DOI Listing

Publication Analysis

Top Keywords

eye tracking
16
eye
13
tracking system
8
external beam
8
beam radiotherapy
8
target localization
8
eye movements
8
healthy subjects
8
tracking
5
treatment
5

Similar Publications

Background: While alcohol has been shown to impair eye movements in young adults, little is known about alcohol-induced oculomotor impairment in older adults with longer histories of alcohol use. Here, we examined whether older adults with chronic alcohol use disorder (AUD) exhibit more acute tolerance than age-matched light drinkers (LD), evidenced by less alcohol-induced oculomotor impairment and perceived impairment.

Method: Two random-order, double-blinded laboratory sessions with administration of alcohol (0.

View Article and Find Full Text PDF

Characterization of Optokinetic Nystagmus in Healthy Participants With a Novel Oculography Device.

Otolaryngol Head Neck Surg

January 2025

Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.

Objective: To develop a proof-of-concept smart-phone-based eye-tracking algorithm to assess non-pathologic optokinetic (OKN) nystagmus in healthy participants. Current videonystagmography (VNG) is typically restricted to in-office use, and advances in portable vestibular diagnostics would yield immense public health benefits.

Study Design: Prospective cohort study.

View Article and Find Full Text PDF

Eye movement detection algorithms (e.g., I-VT) require the selection of thresholds to identify eye fixations and saccadic movements from gaze data.

View Article and Find Full Text PDF

This study employs subjective evaluation and eye movement experiments to explore the application and conveyance of logo graphics design, which conforms to the Gestalt principle of closure, to understand the psychological process of this principle in the perception of a logo. The study found that there is no significant difference between completely enclosed logos and unenclosed ones that conform to the principle of closure in their influence on sightline behavior due to the effects of closure, but the subjective evaluation favors unenclosed logos as more attractive and comfortable to perceive, which agrees with modern logo design trends. In addition, the sightline distribution of the image-type logos is more scattered and has the most extended fixation duration.

View Article and Find Full Text PDF

The theory of expertise suggests that there should be observable differences in the eye movement patterns between experts and non-experts. Previous studies have investigated how expertise influences eye movement patterns during cognitive tasks like reading. However, the impact of expertise on eye movements in comics, a multimodal form of text, remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!