The absorption, excitation, and emission spectra of the Sr2CeO4 nanocrystals prepared by the modified sol-gel method were investigated. The impact of the average grain size of Sr2CeO4 nanocrystals on their optical properties was investigated. It was observed that with increasing the average grain size of Sr2CeO4 nanocrystals, the emission decay times decreased significantly. A similar behavior was observed for the emission quantum efficiencies and the Huang-Rhys factors. The grain size dependence of optical parameters of Sr2CeO4 nanocrystals was found well fitted by functions of the reciprocal of the grain diameter. It was shown that this dependence may be rationalized assuming that the correction for electric local field associated with effective refractive index affecting the spherical nanoparticle is governed by its shell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4919880 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!