Advanced materials for electrocatalytic and photoelectrochemical water splitting are key for taking advantage of renewable energy. In this study, ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays with a nanoporous surface were fabricated via ion exchange and successive ionic layer adsorption and reaction (SILAR) processes. The ZnO/ZnSe/CdSe/Cu(x)S sample displays a high photocurrent density of 12.0 mA cm(-2) under AM 1.5G illumination, achieves the highest IPCE value of 89.5% at 500 nm at a bias potential of 0.2 V versus Ag/AgCl, and exhibits greatly improved photostability. The functions of the ZnSe, CdSe, and Cu(x)S layers in the ZnO/ZnSe/CdSe/Cu(x)S heterostructure were clarified. ZnSe is used as a passivation layer to reduce the trapping and recombination of charge carriers at the interfaces of the semiconductors. CdSe functions as a highly efficient visible light absorber and builds heterojunctions with the other components to improve the separation and transportation of the photoinduced electrons and holes. Cu(x)S serves as a passivation layer and an effective p-type hole mediator, which passivates the defects and surface states of the semiconductors and forms p-n junctions with CdSe to promote the hole transportation at the semiconductor-electrolyte interface. The nanoporous surface of the ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays, together with the tunnel transportation of the charge carriers in the thin films of ZnSe and CdSe, also facilitates the kinetics of photoelectrochemical reactions and improves the optical absorption as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp01421b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!