Oscillatory systems with time-delayed pulsatile feedback appear in various applied and theoretical research areas, and received a growing interest in recent years. For such systems, we report a remarkable scenario of destabilization of a periodic regular spiking regime. At the bifurcation point numerous regimes with nonequal interspike intervals emerge. We show that the number of the emerging, so-called "jittering" regimes grows exponentially with the delay value. Although this appears as highly degenerate from a dynamical systems viewpoint, the "multijitter" bifurcation occurs robustly in a large class of systems. We observe it not only in a paradigmatic phase-reduced model, but also in a simulated Hodgkin-Huxley neuron model and in an experiment with an electronic circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.178103DOI Listing

Publication Analysis

Top Keywords

multistable jittering
4
jittering oscillators
4
oscillators pulsatile
4
pulsatile delayed
4
delayed feedback
4
feedback oscillatory
4
systems
4
oscillatory systems
4
systems time-delayed
4
time-delayed pulsatile
4

Similar Publications

Oscillatory systems with time-delayed pulsatile feedback appear in various applied and theoretical research areas, and received a growing interest in recent years. For such systems, we report a remarkable scenario of destabilization of a periodic regular spiking regime. At the bifurcation point numerous regimes with nonequal interspike intervals emerge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!