A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. | LitMetric

Heteroatom-doped graphene materials have been intensely studied as active electrodes in energy storage devices. Here, we demonstrate that boron-doped porous graphene can be prepared in ambient air using a facile laser induction process from boric acid containing polyimide sheets. At the same time, active electrodes can be patterned for flexible microsupercapacitors. As a result of boron doping, the highest areal capacitance of as-prepared devices reaches 16.5 mF/cm(2), 3 times higher than nondoped devices, with concomitant energy density increases of 5-10 times at various power densities. The superb cyclability and mechanical flexibility of the device are well-maintained, showing great potential for future microelectronics made from this boron-doped laser-induced graphene material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b00436DOI Listing

Publication Analysis

Top Keywords

boron-doped laser-induced
8
laser-induced graphene
8
active electrodes
8
flexible boron-doped
4
graphene
4
graphene microsupercapacitors
4
microsupercapacitors heteroatom-doped
4
heteroatom-doped graphene
4
graphene materials
4
materials intensely
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!