αβ T-cell receptors from multiple sclerosis brain lesions show MAIT cell-related features.

Neurol Neuroimmunol Neuroinflamm

Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France.

Published: August 2015

Objectives: To characterize phenotypes of T cells that accumulated in multiple sclerosis (MS) lesions, to compare the lesional T-cell receptor (TCR) repertoire of T-cell subsets to peripheral blood, and to identify paired α and β chains from single CD8(+) T cells from an index patient who we followed for 18 years.

Methods: We combined immunohistochemistry, laser microdissection, and single-cell multiplex PCR to characterize T-cell subtypes and identify paired TCRα and TCRβ chains from individual brain-infiltrating T cells in frozen brain sections. The lesional and peripheral TCR repertoires were analyzed by pyrosequencing.

Results: We found that a TCR Vβ1(+) T-cell population that was strikingly expanded in active brain lesions at clinical onset comprises several subclones expressing distinct yet closely related Vα7.2(+) α chains, including a canonical Vα7.2-Jα33 chain of mucosal-associated invariant T (MAIT) cells. Three other α chains bear striking similarities in their antigen-recognizing, hypervariable complementarity determining region 3. Longitudinal repertoire studies revealed that the TCR chains that were massively expanded in brain at onset persisted for several years in blood or CSF but subsequently disappeared except for the canonical Vα7.2(+) MAIT cell and a few other TCR sequences that were still detectable in blood after 18 years.

Conclusions: Our observation that a massively expanded TCR Vβ1-Jβ2.3 chain paired with distinct yet closely related canonical or atypical MAIT cell-related α chains strongly points to an antigen-driven process in early active MS brain lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426681PMC
http://dx.doi.org/10.1212/NXI.0000000000000107DOI Listing

Publication Analysis

Top Keywords

brain lesions
12
multiple sclerosis
8
mait cell-related
8
identify paired
8
active brain
8
distinct closely
8
massively expanded
8
tcr
6
chains
6
brain
5

Similar Publications

AI-Assisted Compressed Sensing Enables Faster Brain MRI for the Elderly: Image Quality and Diagnostic Equivalence with Conventional Imaging.

Int J Gen Med

January 2025

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, People's Republic of China.

Purpose: Conventional brain MRI protocols are time-consuming, which can lead to patient discomfort and inefficiency in clinical settings. This study aims to assess the feasibility of using artificial intelligence-assisted compressed sensing (ACS) to reduce brain MRI scan time while maintaining image quality and diagnostic accuracy compared to a conventional imaging protocol.

Patients And Methods: Seventy patients from the department of neurology underwent brain MRI scans using both conventional and ACS protocols, including axial and sagittal T2-weighted fast spin-echo sequences and T2-fluid attenuated inversion recovery (FLAIR) sequence.

View Article and Find Full Text PDF

Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.

View Article and Find Full Text PDF

Characteristics of TSPO expression in marmoset EAE.

J Neuroinflammation

January 2025

Viral Immunology Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Building 10, Room 5C103, 10 Center Drive, Bethesda, MD, 20892-1400, USA.

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) and is a leading non-traumatic cause of disability in young adults. The 18 kDa Translocator Protein (TSPO) is a mitochondrial protein and positron emission tomography (PET)-imaging target that is highly expressed in MS brain lesions. It is used as an inflammatory biomarker and has been proposed as a therapeutic target.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Objectives: Language is a critical aspect of human cognition and function, and its preservation is a priority for neurosurgical interventions in the left frontal operculum. However, identification of language areas can be inconsistent, even with electrical mapping. The use of multimodal structural and functional neuroimaging in conjunction with intraoperative neuromonitoring may augment cortical language area identification to guide the resection of left frontal opercular lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!