Background: Signal transducer and activator of transcription (STAT)3 is involved in a metabolic shift in cancer cells, the Warburg effect through its pro-oncogenic activity. To develop efficient STAT3 inhibitors against cancer cells, novel proteomic and metabolic target molecules need to be explored using multi-omics approaches in the context of STAT3 gene inhibition-mediated tumor growth suppression.

Materials And Methods: We found that short hairpin (sh)RNA-mediated STAT3 inhibition suppressed tumor growth in a highly STAT3-activated lymphoma cell line, SCC-3 cells, and we investigated the effect of STAT3 inhibition on metabolic switching using 2-dimensional differential gel electrophoresis and capillary electrophoresis-time of flight-mass spectrometry.

Results: We identified latexin as a proteomic marker candidate and metabolic enzymes including fructose-bisphosphate aldolase A (ALDOA) as a metabolic marker candidate for STAT3-targeting therapy using STAT3-specific shRNA gene transduction. In particular, latexin expression was up-regulated in four STAT3-activated cancer cell lines including SCC-3 transduced with STAT3-specific shRNA. The up-regulation of latexin was identified in SCC-3 tumors transplanted to nude mice after treatment with STAT3 inhibitor.

Conclusion: Our results suggest that STAT3 inactivation reverses the glycolytic shift by down-regulating key enzymes and that it induces up-regulation of latexin as a tumor-suppressor molecule, which partially results in cancer cell apoptosis and tumor growth suppression.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stat3 inhibition
12
tumor growth
12
stat3
8
inhibition metabolic
8
highly stat3-activated
8
stat3-activated lymphoma
8
lymphoma cell
8
cancer cells
8
marker candidate
8
stat3-specific shrna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!