Ovatodiolide sensitizes aggressive breast cancer cells to doxorubicin, eliminates their cancer stem cell-like phenotype, and reduces doxorubicin-associated toxicity.

Cancer Lett

Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Tri-Service General Hospital, Neihu District, Taipei City, Taiwan. Electronic address:

Published: August 2015

Triple-negative breast cancer (TNBC) is chemotherapy-refractory and associated with poor clinical prognosis. Doxorubicin (Doxo), a class I anthracycline and first-line anticancer agent, effective against a wide spectrum of neoplasms including breast carcinoma, is associated with several cumulative dose-dependent adverse effects, including cardiomyopathy, typhilitis, and acute myelotoxicity. This study evaluated the usability of Ovatodiolide (Ova) in sensitizing TNBC cells to Doxo cytotoxicity, so as to reduce Doxo effective dose and consequently its adverse effects. TNBC cell lines MDA-MB-231 and HS578T were used. Pre-treatment of the TNBC cells with 10 µM Ova 24 h before Doxo administration increased the Doxo anticancer effect (IC50 1.4 µM) compared to simultaneous treatment with Doxo ( IC50 1.8 µM), or Doxo alone (IC50 9.2 µM). Intracellular accumulation of Doxo was lowest in Ova pre-treated cells at all Doxo concentrations, when compared with Doxo or simultaneously treated cells. In comparison to the Doxo-only group, cell cycle analysis of MDA-MB-231 cells treated concurrently with 2.5 µM Ova and 1.25 µM Doxo showed increased percentage of cells arrested at G0/G1; however, pre-treatment with the same concentration of Ova 24 h before Doxo showed greater tumor growth inhibition, with a 2.4-fold increased percentage of cells in G0/G1 arrest, greater Doxo-induced apoptosis, and significantly reduced intracellular Doxo accumulation. Additionally, Ova-sensitized TNBC cells also lost their cancer stem cell-like phenotype evidenced by significant dissolution, necrosis of formed mammospheres. Taken together, these findings indicate that Ova sensitizes TNBC cells to Doxo and potentiates doxorubicin-induced elimination of the TNBC cancer stem cell-like phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2015.05.006DOI Listing

Publication Analysis

Top Keywords

tnbc cells
16
doxo
14
cancer stem
12
stem cell-like
12
cell-like phenotype
12
cells doxo
12
ic50 µm
12
cells
10
breast cancer
8
adverse effects
8

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

CD-44 targeted nanoparticles for combination therapy in an in vitro model of triple-negative breast cancer: Targeting the tumour inside out.

Colloids Surf B Biointerfaces

January 2025

Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Dual sgRNA-directed knockout gene expression using CRISPR/Cas9 technology for editing gene in triple-negative breast cancer.

Narra J

December 2024

Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.

View Article and Find Full Text PDF

Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!