Estrogen promotes the survival of human secretory phase endometrial stromal cells via CXCL12/CXCR4 up-regulation-mediated autophagy inhibition.

Hum Reprod

Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China

Published: July 2015

Study Question: What mechanism is involved in regulating the autophagy of endometrial stromal cells (ESCs), and does it participate in the pathogenesis of endometriosis?

Summary Answer: CXCL12 down-regulates secretory phase ESC autophagy.

What Is Known Already: mTOR (mammalian target of rapamycin), the major negative regulator of autophagy, is abnormally increased in endometriotic lesions and is involved in the direct regulation of endometrial stromal cell (ESC) apoptosis.

Study Design, Size, Duration: Autophagy was measured by transmission electron microscopy and immunofluorescence, and in vitro analysis was used to measure estrogen/CXCL12/CXCR4 signaling-mediated ESC autophagy.

Participants/materials, Setting, Methods: A total of 31 controls and 31 women with histologically confirmed endometriosis were included. We measured the autophagy level of normal and endometriosis-derived endometrium, and its relationship to the stage of endometriosis, as well as the potential molecular and signaling pathways that mediate the aberrant autophagy in endometriosis.

Main Results And The Role Of Chance: Compared with control secretory phase ESCs, a significant reduction of the autophagy grade (as observed in TEM), punctuate LC3B staining (as observed in immunofluorescence assays), and autophagy-associated protein levels were exhibited in secretory phase eutopic ESCs (P < 0.05) and ectopic ESCs (P < 0.05) from women with endometriosis. In addition, the autophagy level was strongly negatively correlated with the CXCL12 concentration in ESCs (R(2) = -0.9694). However, there was no significant difference in autophagy grade or CXCL12 concentration between stage I-II and stage III-IV endometriosis-derived ectopic ESCs (P > 0.05). Based on a human autophagy PCR array, CXCL12 and CXCR4, which is the CXCL12 receptor, in ESCs were predicted to be molecules that mediate the abnormally lower autophagy in endometriosis. Accordingly, after estradiol (E2) treatment a marked increase in CXCL12 secretion (1.71-fold, P < 0.01) and CXCR4 expression (5.07-fold, P < 0.01) in secretory phase ESCs was observed together with decreases in autophagy grade (TEM), punctuate LC3B immunofluorescent staining and autophagy-associated protein levels (P < 0.05). These changes could be reversed by progesterone (P4) (P < 0.05). The suppression of autophagy induced by E2 and recombinant human CXCL12 protein could be abrogated by an anti-CXCR4 neutralizing antibody and by a NF-κB inhibitor (P < 0.05), respectively. In addition, estrogen-stimulated CXCL12 secretion led to a low population of S phase cells (P < 0.05), as well as a low level of apoptosis (P < 0.05) in secretory phase ESCs.

Limitations, Reasons For Caution: Further studies are needed to examine the mechanism of autophagy on ESC apoptosis.

Wider Implications Of The Findings: Measures to increase in endometrial autophagy might be a valid, novel approach to reduce local E2-dependent growth of endometriotic tissue.

Study Funding/competing Interests: This study was supported by the National Natural Science Foundation of China (NSFC) (81471513, 81471548 and 81270677), the Training Program for Young Talents of Shanghai Health System XYQ2013104, the Program for Zhuoxue of Fudan University, and the Program for Creative Talents Education of Key Disciplines of Fudan University. None of the authors has any conflict of interest to declare.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/dev100DOI Listing

Publication Analysis

Top Keywords

secretory phase
24
autophagy
15
endometrial stromal
12
autophagy grade
12
escs 005
12
stromal cells
8
escs
8
cxcl12
8
autophagy level
8
phase escs
8

Similar Publications

Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.

View Article and Find Full Text PDF

This study aimed to evaluate the ovulatory response to GnRH treatment based on the day of its administration in the first follicular wave of the estrous cycle in goats. We hypothesized that maximum ovulatory response with GnRH treatment is dependent on the day of its administration during the early luteal phase of estrous cycle. Forty-eight goats were presynchronized with a single dose of PGF, and ultrasonography was performed to confirm ovulation (Day 0).

View Article and Find Full Text PDF

Effect of eccentric-based resistance exercise on bone (re)modelling markers across the menstrual cycle and oral contraceptive cycle.

Eur J Appl Physiol

December 2024

LFE Research Group, Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, Calle de Martín Fierro, 7, 28040, Madrid, Spain.

Purpose: To investigate the acute effects of eccentric-based resistance exercise and sex-hormone fluctuations on P1NP and β-CTX-1 concentrations in premenopausal females.

Methods: Nine eumenorrheic females and ten oral contraceptive (OC) users performed eccentric-based resistance exercise, consisted of 10 × 10 repetitions of parallel back squats with a 4-s eccentric phase, in the early-follicular (EFP), late-follicular (LFP) and mid-luteal (MLP) phases of the menstrual cycle (MC) or in the withdrawal (WP) and active pill-taking (APP) phases of the OC cycle.

Results: 17β-oestradiol (pg·ml) was lower in EFP (36.

View Article and Find Full Text PDF

Ablation of lipocalin-2 reduces neuroinflammation in a mouse model of Krabbe disease.

Sci Rep

December 2024

Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.

Lipocalin-2 (LCN2) is an acute-phase secretory molecule significantly upregulated in various neuroinflammatory and demyelinating conditions. Krabbe disease (KD) is a neurodegenerative lysosomal disorder caused by a galactosylceramidase (GALC) deficiency, accumulating cytotoxic psychosine in nervous systems, and subsequent neuroinflammation. Here, we show that LCN2 is highly overexpressed in GALC-deficient astrocytes.

View Article and Find Full Text PDF

The aim of this study was to evaluate the changes in calcium, phosphorus and some biochemical parameters in dogs with open and closed cervix pyometra, which was then compared with a control group. A total of 62 bitches of age group 5-10 years old irrespective of breed were enrolled into the study. Control group consisted of 22 bitches which were clinically healthy and in luteal phase of the estrus cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!