To determine whether it is the hypothalamic-pituitary axis or the ovary that plays the predominant role in abnormal estrous cycling induction by postnatal exposure to estrogenic compounds, female rats were subcutaneously injected with 100mg/kg p-tert-octylphenol or vehicle for 5 or 15 days after birth (OP-PND5, OP-PND15 or control). Ovaries were exchanged between control and treated groups on PND28. Controls receiving control or OP-PND5 ovaries showed normal cycles within 4 weeks after the exchange, and corpora lutea were detected in transplanted ovaries. Controls receiving OP-PND15 ovaries consistently increased persistent estrus (PE). OP-PND15 rats receiving control or OP-PND15 ovaries immediately descended into PE, and transplanted ovaries were atrophic with cystic follicles, indicating anovulation. OP-PND5 rats receiving control or OP-PND5 ovaries showed early onset of PE after normal cycling. The hypothalamic-pituitary axis is predominant in abnormal cycling induction by postnatal exposure to OP. OP-PND15 ovaries were impaired compared to other groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2015.05.001DOI Listing

Publication Analysis

Top Keywords

hypothalamic-pituitary axis
12
induction postnatal
12
postnatal exposure
12
receiving control
12
op-pnd15 ovaries
12
predominant role
8
axis ovary
8
cycling induction
8
ovaries
8
controls receiving
8

Similar Publications

Background: The diagnosis of depression or anxiety treated by SSRIs has become relatively common in women of childbearing age. However, the impact of gestational SSRI treatment on newborn thyroid function is lacking. We explored the impact of gestational SSRI treatment on newborn thyroid function as measured by the National Newborn Screening (NBS) Program and identified contributory factors.

View Article and Find Full Text PDF

Purpose: Chronic exposure to synthetic glucocorticoids/GCs, widely in use to treat many diseases, may compromise the hypothalamic-pituitary-adrenal/HPA axis leading to a condition of adrenal insufficiency/AI. This study demonstrates the efficacy of the melatonin/MEL in amelioration of chronic dexamethasone (DEX)-induced AI.

Methods: Mice (Parkes Strain/Male/8 weeks old/30-33 g) were maintained in four groups (10 mice/group) for 30 days: Group 1/Control received intraperitoneal (i.

View Article and Find Full Text PDF

Objective: Impaired fetal and infant growth may cause alterations in developmental programming of the hypothalamic-pituitary-gonadal axis and subsequently pubertal development. We aimed to assess associations between fetal and infant growth and pubertal development.

Design: Population-based prospective birth cohort.

View Article and Find Full Text PDF

Reproductive success and ultimately species survival at a population level is contingent on a plethora of neuroendocrine signals working in concert to regulate gonadal function and reproductive behavior. Among these, the neuropeptide kisspeptin (encoded by the KISS1/Kiss1 gene) has emerged as the master regulator of the hypothalamic-pituitary-gonadal axis. Besides the hypothalamus, both kisspeptin and its cognate receptor are extensively expressed throughout cortico-limbic brain structures in rodents and humans, which are regions traditionally implicated in behavioral and emotional responses.

View Article and Find Full Text PDF

A subgroup of patients with acute depression show an impaired regulation of the hypothalamic-pituitary-adrenocortical axis, which can be sensitively diagnosed with the combined dexamethasone (dex)/corticotropin releasing hormone (CRH)-test. This neuropathological alteration is assumed to be a result of hyperactive AVP/V1b signalling. Given the complicated procedure of the dex/CRH-test, this study aimed to develop a genetic variants-based alternative approach to predict the outcome of the dex/CRH-test in acute depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!