Kinesin, 30 years later: Recent insights from structural studies.

Protein Sci

Institut de Biologie Intégrative de la Cellule (I2BC), Centre National de la Recherche Scientifique, Gif sur Yvette, France.

Published: July 2015

Motile kinesins are motor proteins that move unidirectionally along microtubules as they hydrolyze ATP. They share a conserved motor domain (head) which harbors both the ATP- and microtubule-binding activities. The kinesin that has been studied most moves toward the microtubule (+)-end by alternately advancing its two heads along a single protofilament. This kinesin is the subject of this review. Its movement is associated to alternate conformations of a peptide, the neck linker, at the C-terminal end of the motor domain. Recent progress in the understanding of its structural mechanism has been made possible by high-resolution studies, by cryo electron microscopy and X-ray crystallography, of complexes of the motor domain with its track protein, tubulin. These studies clarified the structural changes that occur as ATP binds to a nucleotide-free microtubule-bound kinesin, initiating each mechanical step. As ATP binds to a head, it triggers orientation changes in three rigid motor subdomains, leading the neck linker to dock onto the motor core, which directs the other head toward the microtubule (+)-end. The relationship between neck linker docking and the orientations of the motor subdomains also accounts for kinesin's processivity, which is remarkable as this motor protein only falls off from a microtubule after taking about a hundred steps. As tools are now available to determine high-resolution structures of motor domains complexed to their track protein, it should become possible to extend these studies to other kinesins and relate their sequence variations to their diverse properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500306PMC
http://dx.doi.org/10.1002/pro.2697DOI Listing

Publication Analysis

Top Keywords

motor domain
12
neck linker
12
motor
9
microtubule +-end
8
track protein
8
atp binds
8
motor subdomains
8
kinesin
4
kinesin years
4
years insights
4

Similar Publications

Post-stroke aphasia is a network disorder characterized by language impairments and aberrant network activation. While patients with post-stroke aphasia recover over time, the dynamics of the underlying changes in the brain remain elusive. Neuroimaging work demonstrated that language recovery is a heterogeneous process, characterized by varying activation levels in several regions of the left-hemispheric language network and the domain-general bilateral multiple-demand network.

View Article and Find Full Text PDF

Background And Purpose: Asymptomatic carotid stenosis (ACS) is an independent risk factor for ischemic stroke and vascular cognitive impairment, affecting cognitive function across multiple domains. This study aimed to explore differences in static and dynamic intrinsic functional connectivity and temporal dynamics between patients with ACS and those without carotid stenosis.

Methods: We recruited 30 patients with unilateral moderate-to-severe (stenosis ≥ 50%) ACS and 30 demographically-matched healthy controls.

View Article and Find Full Text PDF

This study aimed to examine and compare the anthropometric profiles, motor skills, game-related abilities, and functional capacities of under-15 (U-15) and under-16 (U-16) male basketball players, evaluate the impact of maturity offset, and predict performance across physical and sport-specific domains. A total of 234 athletes participated in a comprehensive test battery, assessing morphological (height, mass, standing reach), physical (sprinting, agility, jump height, endurance), technical (jump shot, free throws, dribbling), and functional movement screen variables. The U-16 group outperformed U-15 players in physical characteristics and jump height.

View Article and Find Full Text PDF

The effects of extracorporeal shock wave therapy in children with cerebral palsy: a systematic review.

Int J Surg

January 2025

Senior researcher and lecturer at the Master Specialized Physical Therapy programs at Avans+, Breda, The Netherlands.

Introduction: Spastic Cerebral Palsy (CP) is a major cause of movement disorders in pediatric rehabilitation. Current treatments are often invasive and may lead to substantial discomfort. Extracorporeal shockwave therapy (ESWT) presents a potential alternative, offering a less invasive approach with a reduced side effect profile.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a heterogeneous neurobiological condition characterized by behavioral problems and delayed neurodevelopment. Although transcranial magnetic stimulation (TMS) has been proposed as an alternative treatment for patients with ASD because of its promising benefits in reducing repetitive behaviors and enhancing executive functions, the use of high-intensity pulses (Hi-TMS) appears to be related to the side effects of the therapy. Low-intensity TMS (Li-TMS) has been partially investigated, but it may have clinical effects on ASD and simultaneously increase treatment safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!