AI Article Synopsis

  • Agricultural intensification requires reinvesting carbon compounds into systems to maintain soil quality while impacting methane uptake in soils.
  • Research shows that applying specific bio-based residues can transiently enhance methane uptake in agricultural soils, countering expectations of low methane oxidation potential.
  • The study indicates that while agricultural soils are often seen as methane sources, strategic management practices could improve methane oxidation rates, showcasing the potential for effective carbon management.

Article Abstract

Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land-use change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12974DOI Listing

Publication Analysis

Top Keywords

methane uptake
28
soil methane
20
agricultural soils
20
methane
16
methane sink
12
methane oxidation
12
bio-based residue
8
residue application
8
loss methane
8
sink function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!