Objective: To explore the anti-obesity effects and the mechanism of action of Monascus pilosus(M. pilosus)-fermented black soybean (MFBS) extracts (MFBSE) and MFBS powders (MFBSP) in adipocytes and high-fat diet (HFD)-induced obese mice, respectively.
Methods: Black soybean was fermented with M. pilosus, and the main constituents in MFBS were analyzed by HPLC analysis. In vitro, MFBSE were examined for anti-adipogenic effects using Oil-Red O staining. In vivo, mice were fed a normal-fat diet (NFD) control, HFD control or HFD containing 1 g/kg MFBSP for 12 weeks, and then body weight gain and tissues weight measured. Real-time PCR and western blot assay were used to determine the mechanism of anti-adipogenic effects.
Results: MFBSE inhibited lipid accumulation in 3T3-L1 adipocytes without exerting cell cytotoxicity. MFBSP treatment in HFD-fed mice significantly decreased the body weight gain compared with the HFD control mice. MFBSE and MFBSP treatment resulted in significantly lower mRNA levels of adipogenesis-related genes, such as peroxisome proliferator-activated receptor γ(PPAR γ), fatty acid-binding protein 4 (FABP4), and fatty acid synthase (FAS), in adipocytes and in white adipose tissue (WAT) of HFD-induced obese mice.
Conclusions: These results suggest that the anti-obesity effects of MFBS are elicited by regulating the expression of adipogenesis-related genes in adipocytes and WAT of HFD-induced obese mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1995-7645(14)60330-8 | DOI Listing |
Genes (Basel)
January 2025
College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
Background: The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare.
View Article and Find Full Text PDFFoods
January 2025
CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal.
This study explores the potential of novel feed ingredients for monogastric animals, such as pigs and poultry, to enhance meat quality and nutritional value while reducing the environmental footprint of production. Innovative feed options like black soldier fly larvae, microalga, seaweed, fermented soybean hulls, fortified flaxseed and grape pomace have significantly improved meat quality and nutritional traits. Results indicate that these ingredients enrich meat with omega-3 fatty acids, antioxidants, vitamins and minerals, enhancing nutritional value while improving sensory traits such as flavour, tenderness and colour.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
Depto de Biologia Geral, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
Caterpillars of the genus Spodoptera are the main pests in soybean and cotton crops and Spodoptera cosmioides causes more severe losses than other caterpillars in these agricultural crops. However, there are few recommended insecticides for controlling this pest. Lambda-cyhalothrin is a pyrethroid used to control a wide spectrum of arthropods including lepidopterans.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata City, Niigata 950-2181, Japan. Electronic address:
To investigate the fluorescent properties of defects found on the surface of harvested soybeans, the front-face method was used to measure the Excitation Emission Matrix (EEM) on 106 samples of two varieties of soybeans to evaluate fluorescent properties according to defect type. The EEM showed four main peaks at Excitation/Emission (Ex/Em): 350-430 nm/420-510 nm, 410-450 nm/460-530 nm, 260-290 nm/300-350 nm and 210-230 nm/310-340 nm. In the Diseased, Pest, and Denatured (Black) soybeans, the above four main peaks were weakened.
View Article and Find Full Text PDF<b>Background and Objective:</b> Black soybeans [<i>Glycine max</i> (L.) Merr] are among the important crops, but the cultivated resources are normally low-yielding, susceptible to diseases and low profit. Therefore, it is necessary to evaluate the genetic diversity of black soybean germplasms for breeding programs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!