Electrical conductivity of quasi-two-dimensional foams.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratoire de Physique des Solides, CNRS and Université Paris-Sud, 91405 Orsay Cedex, France.

Published: April 2015

Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.91.042301DOI Listing

Publication Analysis

Top Keywords

liquid content
12
electrical conductivity
8
quasi-2d foams
8
foams
6
conductivity quasi-two-dimensional
4
quasi-two-dimensional foams
4
foams quasi-two-dimensional
4
quasi-two-dimensional quasi-2d
4
foams consist
4
consist monolayers
4

Similar Publications

Hyperspectral Imaging for High Throughput Optical Spectroscopy of pL Droplets.

Anal Chem

January 2025

Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.

View Article and Find Full Text PDF

Detection and characterization of pathogenic Bacillus haynesii from Tribulus terrestris extract: ways to reduce its levels.

Braz J Microbiol

January 2025

Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.

Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.

View Article and Find Full Text PDF

Objectives: Soybeans have various positive effects on health, including anti-inflammatory and preventing kidney damage. There is concern regarding the phytoestrogen content due to the high isoflavone content in soybeans. Various forms of soybean processing have been tried; in this study, the hydrolysis method will be used to obtain the active substance Arginine-Glycine-Aspartate (RGD) tripeptide in soybean protein hydrolyzed by bromelain (SPHB).

View Article and Find Full Text PDF

Aqueous extracts of and as promising sources of antibiofilm compounds against mucoid and small colony variants of and .

Biofilm

June 2025

Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.

Bacterial biofilms formed by and pose significant challenges in treating cystic fibrosis (CF) airway infections due to their resistance to antibiotics. New therapeutic approaches are urgently needed to treat these chronic infections. This study aimed to investigate the antibiofilm potential of various plant extracts, specifically targeting mucoid and small colony variants of and and strains.

View Article and Find Full Text PDF

Electric-field oscillations are now experimentally accessible in the THz-to-PHz frequency range. Their measurement delivers the most comprehensive information content attainable by optical spectroscopy - if performed with high sensitivity. Yet, the trade-off between bandwidth and efficiency associated with the nonlinear mixing necessary for field sampling has so far strongly restricted sensitivity in applications such as field-resolved spectroscopy of molecular vibrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!