Coherent energy transport in classical nonlinear oscillators: An analogy with the Josephson effect.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.

Published: April 2015

By means of a simple theoretical model and numerical simulations, we demonstrate the presence of persistent energy currents in a lattice of classical nonlinear oscillators with uniform temperature and chemical potential. In analogy with the well-known Josephson effect, the currents are proportional to the sine of the phase differences between the oscillators. Our results elucidate general aspects of nonequilibrium thermodynamics and point towards a way to practically control transport phenomena in a large class of systems. We apply the model to describe the phase-controlled spin-wave current in a bilayer nanopillar.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.91.040102DOI Listing

Publication Analysis

Top Keywords

classical nonlinear
8
nonlinear oscillators
8
coherent energy
4
energy transport
4
transport classical
4
oscillators analogy
4
analogy josephson
4
josephson simple
4
simple theoretical
4
theoretical model
4

Similar Publications

In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.

View Article and Find Full Text PDF

Fuzzy modelling and cost optimization of fault-tolerant system with service interruption.

ISA Trans

December 2024

Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi 110019, India. Electronic address:

Redundancy and maintainability-supported fault-tolerant machining systems are used in many industries to achieve pre-specified reliability and system capability. In this investigation, a non-Markov model for the machining system has been developed by involving the concepts of server vacation, server breakdown, and reboot process. The server may fail and undergo primary repair which may be unsuccessful in recovering the server.

View Article and Find Full Text PDF

Three-dimensional (3D) path planning is a crucial technology for ensuring the efficient and safe flight of UAVs in complex environments. Traditional path planning algorithms often find it challenging to navigate complex obstacle environments, making it challenging to quickly identify the optimal path. To address these challenges, this paper introduces a Nutcracker Optimizer integrated with Hyperbolic Sine-Cosine (ISCHNOA).

View Article and Find Full Text PDF

Neural network-based dynamic target enclosing control for uncertain nonlinear multi-agent systems over signed networks.

Neural Netw

December 2024

School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China; Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu, 611731, Sichuan, China. Electronic address:

Neural networks have significant advantages in the estimation of uncertainty dynamics, which can afford highly accurate prediction outcomes and enhance control robustness. With this in mind, this study presents a neural network-based method to investigate the uncertain target enclosing control problem for multi-agent systems over signed networks. Firstly, a nominal target enclosing controller is constructed by adding the target information component into the classical bipartite consensus error, in which the multi-agent system can be grouped to enclose the target from opposite sides.

View Article and Find Full Text PDF

High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!