Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM) was induced in wild-type (WT) and PTP1B-deficient mice (KO) with streptozotocin (STZ) injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL), cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431674 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126866 | PLOS |
Elife
January 2025
Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.
View Article and Find Full Text PDFFoods
November 2024
School of Public Health, Fujian Medical University, Fuzhou 350005, China.
Background: Kaempferol (KPF), a flavonoid abundant in edible plants, possesses potent anti-inflammatory and antioxidant properties beneficial with notable health benefits.
Objective: To evaluate the protective effects of KPF on metabolic disturbances and pancreatic damage in a Type 1 diabetes mellitus (T1DM) mouse model.
Methods: Male C57BL/6 mice were divided into normal, T1DM, T1DM + KPF 25 mg/kg, and T1DM + KPF 50 mg/kg groups.
World J Diabetes
December 2024
Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India.
Patients with type 1 diabetes mellitus (T1DM) experience multiple episodes of hypoglycemia, resulting in dysfunctional counter-regulatory responses with time. The recent experimental study by Jin explored the role of intestinal glucagon-like peptide-1 (GLP-1) in impaired counter-regulatory responses to hypoglycemia. They identified intestinal GLP-1 along with GLP-1 receptor (GLP-1R) as the new key players linked with impaired counter-regulatory responses to hypoglycemia in type 1 diabetic mice.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada.
A complication of type 1 diabetes mellitus (T1DM) is diabetic myopathy that includes reduced regenerative capacity of skeletal muscle. Sphingolipids are a diverse family of lipids with roles in skeletal muscle regeneration. Some studies have found changes in sphingolipid species levels in T1DM, however, the effect of T1DM on a sphingolipid panel in regenerating skeletal muscle has not been examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!