The aim of this experimental work was to evaluate deposition of titanium dioxide (TiO2 ) microparticles and nanoparticles, which could originate from titanium bioimplants, in the gingiva. Wistar rats were injected intraperitoneally (i.p.) with a suspension of TiO2 particles of different sizes (150, 10, or 5 nm). The rats were killed 12 months post-injection, and the buccal and lingual gingivae were resected and evaluated using light and scanning electron microscopy. Energy-dispersive X-ray spectroscopy (EDS) was used to confirm the presence of titanium in deposits of microparticles and nanoparticles, and the concentration of titanium in tissues was measured using inductively coupled plasma-mass spectrometry (ICP-MS). Histological examination showed that all experimental groups exhibited agglomerates, in the gingiva, of titanium particles of micrometer size range, with no associated inflammatory response. Higher concentrations of titanium traces were shown, by ICP-MS, in both buccal and lingual tissues of all experimental groups compared with their matched controls. Titanium concentrations were significantly higher in the buccal gingiva than in the lingual gingiva, and after injection with 5-nm particles than with 10-nm particles in both localizations. Titanium microparticles and nanoparticles deposit in the gingiva, and mostly on the buccal side. Gingival deposition of titanium could be considered a tissue indicator of tribocorrosion processes of titanium bioimplants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/eos.12190DOI Listing

Publication Analysis

Top Keywords

microparticles nanoparticles
16
titanium
10
titanium dioxide
8
deposition titanium
8
titanium bioimplants
8
buccal lingual
8
experimental groups
8
gingiva
6
migration titanium
4
microparticles
4

Similar Publications

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

The aim of this study is to explore and evaluate recent innovations in drug delivery systems (DDS) for biologics, focusing on enhancing stability and targeted delivery to improve the efficacy and safety of next-generation therapeutics. The most recent developments in a variety of DDS, such as nanoparticles, microneedles, hydrogels, and biodegradable polymers, were examined in depth. Information from peer-audited diaries, clinical preliminaries, and mechanical reports were blended to survey the presentation of these frameworks concerning dependability, designated conveyance, patient consistence, and controlled discharge.

View Article and Find Full Text PDF

Mass Transfer-Reaction Modeling of CO Capture Mediated by Immobilized Carbonic Anhydrase Enzyme on Multiscale Supporting Structures.

Environ Sci Technol

January 2025

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.

Article Synopsis
  • Immobilized carbonic anhydrase (CA) enhances CO absorption in potassium carbonate (PC) solutions, presenting a viable alternative to traditional amine-based carbon capture methods.
  • The study developed cross-scale models to assess how different enzyme immobilization materials—ranging from nanoparticle to macro-scale carriers—affect CO absorption rates, finding that nanoscale carriers are most effective.
  • While increasing enzyme activity can boost absorption rates, diffusion limits, particularly in the liquid phase, impose an upper limit to this enhancement, and smaller particle sizes below 0.35 μm significantly improve performance over benchmark solutions.
View Article and Find Full Text PDF

In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.

View Article and Find Full Text PDF

Nanoparticle and microparticle-based systems for enhanced oral insulin delivery: A systematic review and meta-analysis.

J Nanobiotechnology

December 2024

Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.

Diabetes mellitus (DM) prevalence is rising worldwide. Current therapies comprising subcutaneous insulin injections can cause adverse effects such as lipodystrophy, local reactions like redness and swelling, fluid retention, and allergic reactions. Nanoparticle carriers for oral insulin are groundbreaking compared to existing methods because they are non-invasive treatments, showing operational convenience, controlled release profile, and ability to simulate the physiological delivery route into the bloodstream.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!