Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431880 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1004836 | DOI Listing |
Zhongguo Gu Shang
January 2025
Department of Thoracic Surgery, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan 430050, Hubei, China.
Objective: To investigate the clinical efficacy of thoracoscopic minimally invasive surgery with nickel-titanium shape memory alloy wrap bone plate versus rib periosteal internal fixation in patients with multiple rib fractures (MRF) and flail chest.
Methods: A retrospective analysis was performed on 100 patients with MRF and flail chest treated with thoracoscopic minimally invasive surgery and internal fixation with rib fracture preservation between January 2019 and December 2022, including 54 males and 46 females, aged from 20 to 65 years old, with an average age of (38.0±18.
ACS Nano
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.
View Article and Find Full Text PDFSemin Thorac Cardiovasc Surg
January 2025
Department of Cardiothoracic Surgery, Metropolitan Heart and Vascular Institute, Coon Rapids, Minnesota.
Beating-heart CABG in patients with LV dysfunction can provide the best of all words by limiting myocardial injury purported by cardioplegic arrest. Complete revascularization is possible and graft numbers are not different when compared to arrested heart CABG. Furthermore, beating-heart CABG more often reduces the need for intraoperative and postoperative mechanical support reducing the complications and costs associated with these devices.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Mitochondrial dysfunction and ferroptosis play crucial roles in myocardial ischemia/reperfusion (I/R) following heart transplantation. Microsomal glutathione s transferase 1 (MGST1) is widely distributed in mitochondria and has a protective effect against ferroptosis, and its involvement in myocardial I/R injury has not yet been elucidated. In this study, donor hearts from C57BL/6 male mice were subjected to 12 h of ex-vivo cold ischemia treatment and transplanted into the abdomen of recipient mice for 24 h of reperfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!