The metabolism, distribution, and elimination of cyadox (CYA) is investigated in pigs, chickens, carp, and rats to identify the marker residue and target tissue of CYA in food animals for food safety concerns. Following a single oral gavage of [(3)H]-CYA, the total radioactivity was rapidly excreted, with more than 95% of the dose excreted within 14 days in the four species. Fecal excretion of the total radioactivity was 66.2% and 51.6%, and urinary excretion of the total radioactivity was 28.35% and 44.3% in rats and pigs, respectively. Radioactivity was observed in nearly all of the tissues in the first 6 h after 7 days of consecutive oral dosing. The highest radioactivity and longest persistence were in the livers and kidneys, where the majority of the radioactivity was cleared within 7 days. A total of 15 metabolites were identified in rats, pigs, chickens, and carp, and eight new metabolites were identified for the first time in vivo. No parent drug could be detected in the tissues of rats and pigs. The major metabolites of CYA were Cy1, Cy3, and Cy6 in pigs, Cy1, Cy5, and Cy6 in chickens, Cy1, Cy2, and Cy4 in carp, and Cy1, Cy2, Cy4, and Cy5 in rats. Cy1 was suggested to be the marker residue, and the kidneys were identified as the target tissue of CYA in pigs and chickens. These results provide comprehensive information for the food safety evaluation of CYA in food animals and will improve the understanding of the pharmacology and toxicology of CYA in animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.5b01745 | DOI Listing |
Poult Sci
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China. Electronic address:
Probiotics benefit the health and production performance of chickens, but their impact on egg and eggshell quality, particularly in the later stage, remains unclear. Here, 1-day-old Tianfu green shell-laying hens were fed either non-probiotics feed (n = 180) or feed supplemented with 100 mg / kg probiotics (n = 180). 16S rDNA sequencing indicated that dietary probiotics decreased the distribution of uterine p_Firmicutes, g_Fusobacterium, and s_Fusobacterium_unclassified, while increased p_Proteobacteria, g_Ralstonia, and s_Ralstonia_unclassified.
View Article and Find Full Text PDFPoult Sci
January 2025
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China. Electronic address:
H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs).
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Shandong Center for Animal Disease Control and Prevention, Shandong Centre for Zoonotic Disease Surveillance, Jinan 250100, China.
Antimicrobial resistant (AMR) () isolated from animals may lead to antibiotic treatment failure and economic losses to farmers. The co-existence of antimicrobial resistant genes (ARGs) in the same isolate presents a major challenge for the prevention and control of infection in multidrug-resistant (MDR) Gram-negative organisms. There have been a lot of studies on the antibiotic resistance of in livestock and poultry, but few of them have focused on clinical pathogens.
View Article and Find Full Text PDFVet Parasitol Reg Stud Reports
January 2025
Center for Companion Animal Studies, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
Vector-borne pathogens, which are transmitted by blood-feeding arthropods to animals and people, are common in tropical regions where, combined with economic factors, can cause significant public health burden. A community-level study was undertaken in southwestern Guatemala to assess the presence of vector-borne pathogens in blood samples from humans (n = 98), their animals (n = 90), and ectoparasites (n = 83) over a period of 2 weeks. Human capillary blood was collected from participant's index finger, and animal venous blood (chickens, pigs, dogs, and cats) was collected from the jugular or cephalic veins at the enrollment period of a concurrent study.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!