Background: How adaptive phenotypes are shaped by the action of key developmental genes during ontogeny remains poorly understood. Water striders, a group of hemipteran insects, present a unique example of adaptation to life on the fluid water surface substrate. The group has undergone a set of leg modifications allowing them to efficiently move on the water surface and hence invade a variety of niches from ponds to open oceans. The elongated legs of water striders play a key role in generating efficient movement on the fluid by acting as propelling oars.
Results: To determine the developmental mechanisms underlying leg elongation, we examined the function of the key developmental genes decapentaplegic (dpp), wingless (wg), epidermal growth factor receptor (egfr), and hedgehog (hh) during embryonic development in the water strider Limnoporus dissortis. By analyzing expression patterns and RNAi knockdown phenotypes, we uncover the role of these genes in leg growth and patterning during embryogenesis. Our results indicate that wg and egfr contribute to the elongation of all the three segments of all thoracic legs, whereas hh specifies distal leg segments.
Conclusions: Together, our results suggest that key patterning genes contribute to the dramatic elongation of thoracic appendages in water striders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429320 | PMC |
http://dx.doi.org/10.1186/s13227-015-0015-5 | DOI Listing |
Proc Biol Sci
December 2024
Laboratory of Integrative Animal Ecology, Department of New Biology, DGIST, Daegu, Republic of Korea.
Laws of physics shape adaptations to locomotion, and semiaquatic habitats of water striders provide opportunities to explore adaptations to locomotion on water surface. The hydrodynamics of typical propelling with symmetrical strokes of midlegs is well understood, but the subsequent passive sliding on surface has not been explored. We hypothesized that morphological and behavioural adaptations to sliding vary by body size.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Computer Science and Mathematics, University of Finance and Administration, Prague, Czech Republic.
In this paper, we introduce an improved water strider algorithm designed to solve the inverse form of the Burgers-Huxley equation, a nonlinear partial differential equation. Additionally, we propose a physics-informed neural network to address the same inverse problem. To demonstrate the effectiveness of the new algorithm and conduct a comparative analysis, we compare the results obtained using the improved water strider algorithm against those derived from the original water strider algorithm, a genetic algorithm, and a physics-informed neural network with three hidden layers.
View Article and Find Full Text PDFLangmuir
November 2024
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
Superhydrophobic materials have been widely applied in oil-water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA).
View Article and Find Full Text PDFNaturwissenschaften
September 2024
Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24098, Kiel, Germany.
Sexual conflict theory predicts that males that adopt coercive mating strategies impose costs to females during copulation. Nevertheless, conflicting mating strategies may also affect males, although such effects on males are often neglected in the literature. Here, we seek to understand whether male water striders (Gerris lacustris) experience higher body temperatures than females during coercive mating behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!