Background and aims. Substituting chlorhexidine (CHX) for water has been shown to enhance antimicrobial activity of mineral trioxide aggregate (MTA). The purpose of this study was to compare the compressive strength of MTA mixed with distilled water, 0.12% and 0.2% chlorhexidine. Materials and methods. MTA was mixed according to manufacturer's instructions in group I (n = 20). In groups II & III, 0.12% and 0.2% CHX liquid was substituted for water, respectively. Samples were condensed with moderate force into 20 tubes with 1.5×5 mm dimensions and were allowed to set for 72 hours at 37°C in 100% humidity. After being removed from the molds, their compressive strength was determined using Instron testing machine. Each group was divided into two subgroups according to the time of testing (at 72 hours, and one week). Fractured surfaces of 4 specimens in each group were then evaluated under Scanning Electron Microscope (SEM) to determine their microstructure. One-way ANOVA, Tukey, and paired sample t-test was used for statistical analysis. P < 0.05 was set as significant. Results. There was no significant difference between three groups in terms of their compressive strength after 72 hours. However, the compressive strength of group II was significantly higher than group I (P = 0.034) and group III (P = 0.021) after one week. Crystalline microstructure was similar in all groups. Conclusion. Substitution of 0.012% chlorhexidine for water significantly increased the compressive strength of MTA at 1 week without significant change in crystalline structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417486 | PMC |
http://dx.doi.org/10.15171/joddd.2015.001 | DOI Listing |
Nano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China. Electronic address:
The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Warangal, Warangal, 506004, India.
Granite sludge dust (GSD), a significant byproduct of granite processing globally, poses severe environmental and public health challenges, with India alone generating 200 million tons annually. The conventional use of GSD in soil stabilization and construction materials is limited to 20-30%, underscoring the urgent need for sustainable repurposing solutions within the circular economy catering to broader bulk utilization. Unlike traditional techniques, repurposing granite dust using microbially induced calcite precipitation (MICP) offers a sustainable low-impact and eco-friendly ground improvement solution.
View Article and Find Full Text PDFSci Rep
January 2025
College of Electrical and Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, c/ Villadiego s/n, 09001, Burgos, Spain. Electronic address:
The management of end-of-life wind-turbine blades in the coming years will be necessary, as a clear solution for their recycling is yet to be found due to their complex composition. The suitability of their mechanical recycling is therefore evaluated in this paper, obtaining Raw-Crushed Wind-Turbine Blade (RCWTB) for subsequent incorporation in high amounts of up to 10% vol. in concrete, replacing the aggregates to achieve Fiber-Reinforced Concrete (FRC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!