This research is to investigate the role of tolerant spleen dendritic cells (DC) in multiple organs dysfunction syndromes (MODS) at late stage. Tolerant DC and MODS were induced by intraperotineal injection of zymosan. The immunity of DC was determined by examining interleukin (IL)-10, IL-12, IL-2, major histocompatibility complex (MHC), CD86, programmed death (PD-1), programmed death ligand 1 (PD-L1), paired immunoglobulin-like receptor B (PIR-B) or T-cell proliferation in serum, spleen homogenate, DC culture or DC/T-cell co-culture. The PD-L1/PD-1 pathway was blocked using PD-L1 antibody. The IL-12p70 in serum, spleen homogenate and DC culture supernatant were decreased at 5 d and 12 d after zymosan injection while the IL-12p40 and IL-10 were increased. The expression of MHC, cluster of differentiation 86 (CD86), PD-1 and PD-L1 in spleen DCs were increased at early stage after zymosan injection. At 5 d and 12 d, the expression of MHC and CD86 was reduced while the expression of PD-1, PD-L1 and PIR-B was increased, accompanied with decreased proliferation of T-cell and decrease of IL-2 in spleen and serum. Application of PD-L1 antibody improved the above changes. At late stage of MODS mice induced by zymosan, the expression of co-stimulators and inhibitors in spleen DCs was imbalanced to form tolerant DCs which reduced the activation of T-cells. PD-L1 antibody improved the immune tolerance of DCs through intervening PD-1/PD-L1 pathway, and attenuated the inhibition of T-cell activities by tolerant DCs and the immune inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396242PMC

Publication Analysis

Top Keywords

pd-l1 antibody
12
spleen dendritic
8
dendritic cells
8
multiple organs
8
organs dysfunction
8
dysfunction syndromes
8
late stage
8
mhc cd86
8
programmed death
8
serum spleen
8

Similar Publications

Novel therapeutic agents including disitamab vedotin (RC48, an antibody-drug conjugate) and immune-checkpoint inhibitors (e.g., PD-1 inhibitors) have provided new hope as an advanced gastric-cancer (GC) treatment.

View Article and Find Full Text PDF

To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound.

View Article and Find Full Text PDF

In the tumour microenvironment, IL-1α promotes neoangiogenesis, matrix remodelling, tumour proliferation, chemoresistance, and metastases. Highly expressed in human colorectal cancers, IL-1α is associated with poor prognosis. XB2001, a fully human monoclonal antibody neutralizing IL-1α, was evaluated for safety and preliminary efficacy with trifluridine/tipiracil (FTD/TPI) and bevacizumab in metastatic colorectal cancer patients previously treated with oxaliplatin- and irinotecan-based chemotherapies.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy and safety of induction chemotherapy combined with programmed death protein 1 (PD-1) inhibitor (sintilimab) followed by concurrent chemoradiotherapy (CCRT) plus sintilimab, and subsequent maintenance with sintilimab (IC-ICCRT-IO) for patients with unresectable locally advanced esophageal squamous cell carcinoma (ESCC) in a retrospective study.

Methods: Data from patients with histologically confirmed, locally advanced, inoperable ESCC who received IC-ICCRT-IO were retrospectively analyzed. Treatment effects were evaluated after 2 cycles of induction therapy and after CCRT by contrast-enhanced CT scans and esophagograms, followed by subsequent evaluations every 3 months post-treatment.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly invasive and fatal brain tumor with a grim prognosis, where current treatment modalities, including postoperative radiotherapy and temozolomide chemotherapy, yield a median survival of only 15 months. The challenges of tumor heterogeneity, drug resistance, and the blood-brain barrier necessitate innovative therapeutic approaches. This study introduces a strategy employing biomimetic magnetic nanorobots encapsulated with hybrid membranes derived from platelets and M1 macrophages to enhance blood-brain barrier penetration and target GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!