HIPK2 is a new drug target for anti-fibrosis therapy in kidney disease.

Front Physiol

Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Renal Section, James J. Peter Veterans Administration Medical Center New York, NY, USA.

Published: May 2015

In vitro and animal studies continue to elucidate the mechanisms of fibrosis and have led to advancements in treatment for idiopathic pulmonary fibrosis and cirrhosis, but the search for treatments for renal fibrosis has been more disappointing. Here, we will discuss homeodomain-interacting-protein kinase 2 (HIPK2), a novel regulator of fibrosis that acts upstream of major fibrosis signaling pathways. Its key role in renal fibrosis has been validated in vitro and in several murine models of chronic kidney diseases (CKD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411988PMC
http://dx.doi.org/10.3389/fphys.2015.00132DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
8
fibrosis
6
hipk2 drug
4
drug target
4
target anti-fibrosis
4
anti-fibrosis therapy
4
therapy kidney
4
kidney disease
4
disease vitro
4
vitro animal
4

Similar Publications

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches.

Nat Commun

January 2025

College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.

Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.

View Article and Find Full Text PDF

Inhibition of Kv1.3 channel restrains macrophage M2 polarization and ameliorates renal fibrosis via regulating STAT6 phosphorylation.

Pharmacol Res

January 2025

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,Southern Medical University, Guangzhou 510515, China; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China. Electronic address:

Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.

View Article and Find Full Text PDF

Introduction: Podocyte injury has been proven to be a major cause for poor renal outcomes after acute kidney injury (AKI). However, clinical trial data are still limited. This study aimed to explore the clinical correlations between podocyte injury and renal outcomes in hospitalized AKI patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!