Syndecan-1 is a transmembrane heparan sulfate proteoglycan involved in regenerative growth and cellular adhesion. We hypothesized that the induction of tubular syndecan-1 is a repair response to incipient renal damage in apparently stable, uncomplicated renal transplant recipients. We quantified tubular syndecan-1 in unselected renal protocol biopsies taken 1 yr after transplantation. Spearman rank correlation analysis revealed an inverse correlation between tubular syndecan-1 expression and creatinine clearance at the time of biopsy (r = -0.483, P < 0.03). In a larger panel of protocol and indication biopsies from renal transplant recipients, tubular syndecan-1 correlated with tubular proliferation marker Ki67 (r = 0.518, P < 0.0001). In a rat renal transplantation model, 2 mo after transplantation, mRNA expression of syndecan-1 and its major sheddase, A disintegrin and metalloproteinase-17, were upregulated (both P < 0.03). Since shed syndecan-1 might end up in the circulation, in a stable cross-sectional human renal transplant population (n = 510), we measured plasma syndecan-1. By multivariate regression analysis, we showed robust independent associations of plasma syndecan-1 with renal (plasma creatinine and plasma urea) and endothelial function parameters (plasma VEGF-A, all P < 0.01). By various approaches, we were not able to localize syndecan-1 in vessel wall or endothelial cells, which makes shedding of syndecan-1 from the endothelial glycocalyx unlikely. Our data suggest that early damage in transplanted kidneys induces repair mechanisms within the graft, namely, tubular syndecan-1 expression for tubular regeneration and VEGF production for endothelial repair. Elevated plasma syndecan-1 levels in renal transplantation patients might be interpreted as repair/survival factor related to loss of tubular and endothelial function in transplanted kidneys.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00127.2015DOI Listing

Publication Analysis

Top Keywords

tubular syndecan-1
24
renal transplant
16
syndecan-1
14
syndecan-1 expression
12
plasma syndecan-1
12
tubular
9
incipient renal
8
shedding syndecan-1
8
renal
8
transplant recipients
8

Similar Publications

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is used to control noncompressible hemorrhage not addressed with traditional tourniquets. However, REBOA is associated with acute kidney injury (AKI) and subsequent mortality in severely injured trauma patients. Here, we investigated how the degree of aortic occlusion altered the extent of AKI in a porcine model.

View Article and Find Full Text PDF

Adherens junctions between tubular epithelial cells are disrupted in renal ischemia/reperfusion (I/R) injury. Syndecan-1 (SDC-1) is involved in maintaining cell morphology. We aimed to study the role of SDC-1 shedding induced by renal I/R in the destruction of intracellular adherens junctions.

View Article and Find Full Text PDF

Crotamine/siRNA Nanocomplexes for Functional Downregulation of Syndecan-1 in Renal Proximal Tubular Epithelial Cells.

Pharmaceutics

May 2023

Department Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, De Brug, 4th Floor, AA53, 9713 GZ Groningen, The Netherlands.

Proteinuria drives progressive tubulointerstitial fibrosis in native and transplanted kidneys, mainly through the activation of proximal tubular epithelial cells (PTECs). During proteinuria, PTEC syndecan-1 functions as a docking platform for properdin-mediated alternative complement activation. Non-viral gene delivery vectors to target PTEC syndecan-1 could be useful to slow down alternative complement activation.

View Article and Find Full Text PDF

Lupus nephritis (LN) is a common and severe manifestation of pediatric-onset systemic lupus erythematosus (pSLE). It is one of the major causes of long-term glucocorticoid/immune suppressants use in pSLE. It causes long-term glucocorticoid/immune suppressants use and even end-stage renal disease (ESRD) in pSLE.

View Article and Find Full Text PDF

A transcriptome analysis for 24-hour continuous sampled uterus reveals circadian regulation of the key pathways involved in eggshell formation of chicken.

Poult Sci

January 2022

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China. Electronic address:

Circadian timing system controlled the rhythmic events, for example, ovulation and oviposition in chickens. However, how biological clock mediates eggshell formation remains obscure. Here, A 24-h mRNA transcriptome analysis was carried out in the uterus of 18 chickens with similar oviposition time points to identify the rhythmic genes and to reveal critical genes and biological pathways involved in the eggshell biomineralization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!