NKCC1 Activation Is Required for Myelinated Sensory Neurons Regeneration through JNK-Dependent Pathway.

J Neurosci

Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, E-08193 Bellaterra, Spain

Published: May 2015

AI Article Synopsis

  • After peripheral nerve injury, large myelinated sensory axons tend to regenerate less effectively than small sensory axons, and the processes behind this difference are not fully understood.
  • The study examines the role of the Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) in sensory neuron regeneration after sciatic nerve injury in rats, finding that blocking NKCC1 activity enhances neurite outgrowth specifically in myelinated fibers.
  • It also reveals that NKCC1 inhibition affects MAPK signaling pathways in dorsal root ganglia neurons, highlighting the importance of chloride modulation in the regeneration process of myelinated axons.

Article Abstract

After peripheral nerve injury, axons are able to regenerate, although specific sensory reinnervation and functional recovery are usually worse for large myelinated than for small sensory axons. The mechanisms that mediate the regeneration of different sensory neuron subpopulations are poorly known. The Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) is particularly relevant in setting the intracellular chloride concentration. After axotomy, increased NKCC1 phosphorylation has been reported to be important for neurite outgrowth of sensory neurons; however, the mechanisms underlying its effects are still unknown. In the present study we used in vitro and in vivo models to assess the differential effects of blocking NKCC1 activity on the regeneration of different types of dorsal root ganglia (DRGs) neurons after sciatic nerve injury in the rat. We observed that blocking NKCC1 activity by bumetanide administration induces a selective effect on neurite outgrowth and regeneration of myelinated fibers without affecting unmyelinated DRG neurons. To further study the mechanism underlying NKCC1 effects, we also assessed the changes in mitogen-activated protein kinase (MAPK) signaling under NKCC1 modulation. The inhibition of NKCC1 activity in vitro and in vivo modified pJNK1/2/3 expression in DRG neurons. Together, our study identifies a mechanism selectively contributing to myelinated axon regeneration, and point out the role of Cl(-) modulation in DRG neuron regeneration and in the activation of MAPKs, particularly those belonging to the JNK family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705441PMC
http://dx.doi.org/10.1523/JNEUROSCI.4079-14.2015DOI Listing

Publication Analysis

Top Keywords

nkcc1 activity
12
nkcc1
8
sensory neurons
8
nerve injury
8
neurite outgrowth
8
vitro vivo
8
blocking nkcc1
8
drg neurons
8
neurons study
8
regeneration
6

Similar Publications

Disturbances in the brain fluid balance can lead to life-threatening elevation in intracranial pressure (ICP), which represents a vast clinical challenge. Targeted and efficient pharmaceutical therapy of elevated ICP is not currently available, as the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved. To resolve the quantitative contribution of key choroid plexus transport proteins, this study employs mice with genetic knockout and/or viral choroid plexus-specific knockdown of aquaporin 1 (AQP1) and the Na, K, 2Cl cotransporter 1 (NKCC1) for in vivo determinations of CSF dynamics, ex vivo choroid plexus for transporter-mediated clearance of a CSF K load, and patient CSF for [K] quantification.

View Article and Find Full Text PDF

Interleukin 18 (IL-18), a proinflammatory cytokine, has been implicated in various neurological disorders, including cerebrovascular disease and psychiatric disorders. In a previous study, IL-18 was observed to activate microglia and enhance the inflammatory response following intracranial hemorrhage (ICH). However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Introduction: Primary Sjögren syndrome (pSS) is a systemic autoimmune disease that is characterized by the infiltration of immune cells into the salivary glands. The re-establishment of salivary glands (SGs) function in pSS remains a clinical challenge. Myeloid-derived growth factor (MYDGF) has anti-inflammatory, immunomodulatory, and tissue-functional restorative abilities.

View Article and Find Full Text PDF

Evaluation of the Choroid Plexus Epithelium Inflammation TLR4/NF-κB/NKCC1 Signal Pathway Activation in the Development of Hydrocephalus.

CNS Neurosci Ther

October 2024

Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Background: Hydrocephalus is characterized by secretion, circulation, and absorption disorder of cerebrospinal fluid (CSF) with high morbidity and complication rate. The relationship between inflammation and abnormal secretion of CSF by choroid plexus epithelium (CPE) had received more attention. In this study, we aim to detect the role of Toll-like receptor 4/nuclear factor-kappa B/Na+/K+/2Cl-cotransporter 1(TLR4/NF-κB/NKCC1) signal pathway in the development of hydrocephalus.

View Article and Find Full Text PDF

VEGF, but Not BDNF, Prevents the Downregulation of KCC2 Induced by Axotomy in Extraocular Motoneurons.

Int J Mol Sci

September 2024

Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.

Article Synopsis
  • KCC2 is a cotransporter in neurons that regulates chloride levels, crucial for the function of inhibitory neurotransmitters like GABA and glycine; low KCC2 levels can lead to increased neuronal excitability associated with disorders like epilepsy and neuropathic pain.
  • Axotomy (nerve injury) reduces KCC2 levels in motoneurons, but if the muscle reinnervation occurs, KCC2 levels can recover, suggesting the influence of neurotrophic factors.
  • Administration of VEGF can prevent the KCC2 downregulation after axotomy, while BDNF may decrease KCC2 levels, indicating potential therapeutic avenues for conditions linked to neuronal hyperactivity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: