Channelrhodopsins, such as the algal phototaxis receptor Platymonas subcordiformis channelrhodopsin-2 (PsChR2), are light-gated cation channels used as optogenetic tools for photocontrol of membrane potential in living cells. Channelrhodopsin (ChR)-mediated photocurrent responses are complex and poorly understood, exhibiting alterations in peak current amplitude, extents and kinetics of inactivation, and kinetics of the recovery of the prestimulus dark current that are sensitive to duration and frequency of photostimuli. From the analysis of time-resolved optical absorption data, presented in the accompanying article, we derived a two-cycle model that describes the photocycles of PsChR2. Here, we applied the model to evaluate the transient currents produced by PsChR2 expressed in HEK293 cells under both fast laser excitation and step-like continuous illumination. Interpretation of the photocurrents in terms of the photocycle kinetics indicates that the O states in both cycles are responsible for the channel current and fit the current transients under the different illumination regimes. The peak and plateau currents in response to a single light step, a train of light pulses, and a light step superimposed on a continuous light background observed for ChR2 proteins are explained in terms of contributions from the two parallel photocycles. The analysis shows that the peak current desensitization and recovery phenomena are inherent properties of the photocycles. The light dependence of desensitization is reproduced and explained by the time evolution of the concentration transients in response to step-like illumination. Our data show that photocycle kinetic parameters are sufficient to explain the complex dependence of photocurrent responses to photostimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505412 | PMC |
http://dx.doi.org/10.1074/jbc.M115.653071 | DOI Listing |
J Environ Manage
January 2024
Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
Tris(2-chloroethyl) phosphate (TCEP), one of the widely used organophosphorus flame retardants (OPFRs), has been frequently detected in the marine environment in the seas off China. The existing freshwater biotoxicity data are not suited to derivation of the seawater quality criteria of TCEP and evaluating the associated ecological risks. This study aimed at deriving water quality criteria (WQC) of TCEP for marine organisms based on species sensitivity distribution (SSD) approach using the acute toxicity data generated from multispecies bioassays and chronic toxicity data by converting acute data with the acute-to-chronic ratios (ACRs); the derived WQC were then used to evaluate the ecological risk for TCEP in China Seas.
View Article and Find Full Text PDFBiochemistry (Mosc)
November 2022
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
The progress in optogenetics largely depends on the development of light-activated proteins as new molecular tools. Using cultured hippocampal neurons, we compared the properties of two light-activated cation channels - classical channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) and recently described channelrhodopsin isolated from the alga Platymonas subcordiformis (PsChR2). PsChR2 ensured generation of action potentials by neurons when activated by the pulsed light stimulation with the frequencies up to 40-50 Hz, while the upper limit for CrChR2 was 20-30 Hz.
View Article and Find Full Text PDFJ Hazard Mater
March 2023
Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada. Electronic address:
This review considers the interaction of microplastics (MPs)/nanoplastics (NPs) and co-existing contaminants, including organic contaminants, potentially toxic elements (PTEs), and metal/metal-oxide nanoparticles. Stronger adsorption between plastic particles and co-existing contaminants can either facilitate or prevent more contaminants to enter plankton. The characteristics of MPs/NPs, such as polymer type, size, functional groups, and weathering, affect combined effects.
View Article and Find Full Text PDFAnal Chim Acta
September 2022
Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification,Dalian, 116622, China; Medical School, Dalian University, Dalian, 116622, China. Electronic address:
Microalgae are a group of photoautotrophic microorganisms which could use carbon dioxide for autosynthesis. They have been envisioned as one of the most prospective feedstock for renewable oil. However, great endeavors will still be needed to increase their economic feasibility.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
February 2022
Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland.
is a potentially promising species with commercial, environmental and technological viability for industrial applications. The great potential of these microalgae lies in their fast biomass growth, pollution resistance, and compatibility with different culture media. This study aimed to determine the efficiency of biomass production in a medium prepared with water from the Bay of Gdańsk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!